Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.[ ...]

Под действием падающего солнечного потока в результате его поглощения земная поверхность нагревается и становится источником длинноволнового (ДВ) излучения, направленного к атмосфере. Атмосфера, с другой стороны, также является источником ДВ излучения, направленного к Земле (так называемое противоизлучение атмосферы). При этом возникает взаимный теплообмен между земной поверхностью и атмосферой. Разность между КВ излучением, поглощенным земной поверхностью и эффективным излучением называется радиационным балансом. Преобразование энергии КВ солнечной радиации при поглощении ее земной поверхностью и атмосферой, теплообмен между ними составляют тепловой баланс Земли.[ ...]

Главной особенностью радиационного режима атмосферы является парниковый эффект, который заключается в том, что КВ радиация большей частью доходит до земной поверхности, вызывая ее нагрев, а ДВ излучение от Земли задерживается атмосферой, уменьшая при этом теплоотдачу Земли в космос. Атмосфера является своего рода теплоизолирующей оболочкой, которая препятствует охлаждению Земли. Увеличение процентного содержания С02, паров Н20, аэрозолей и т. п. будет усиливать парниковый эффект, что приводит к увеличению средней температуры нижнего слоя атмосферы и потеплению климата. Основным источником теплового излучения атмосферы является земная поверхность.[ ...]

Интенсивность солнечного излучения, поглощенного земной поверхностью и атмосферой составляет 237 Вт/м2, из них 157 Вт/м2 поглощается земной поверхностью, а 80 Вт/м2 - атмосферой. Тепловой баланс Земли в общем виде представлен на рис. 6.15.[ ...]

Радиационный баланс земной поверхности составляет 105 Вт/м2, а эффективное излучение с нее равно разности поглощенной радиаций и радиационного баланса и составляет 52 Вт/м2. Энергия радиационного баланса затрачивается на турбулентный теплообмен Земли с атмосферой, что составляет 17 Вт/м2, и на процесс испарения воды, что составляет 88 Вт/м2.[ ...]

Схема теплообмена атмосферы представлена на рис. 6.16. Как видно из этой схемы, атмосфера получает тепловую энергию от трех источников: от Солнца, в виде поглощенного КВ излучения с интенсивностью примерно 80 Вт/м2; теплоты от конденсации водяного пара, приходящей от земной поверхности и равной 88 Вт/м2; турбулентного теплообмена между Землей и атмосферой (17 Вт/м2).[ ...]

Сумма составляющих теплообмена (185 Вт/м), равна тепловым потерям атмосферы в виде ДВ излучения в космическое пространство. Незначительная часть падающего солнечного излучения, которая существенно меньше приведенных составляющих теплового баланса, расходуется на другие процессы, происходящие в атмосфере.[ ...]

Разность испарений с континентов и поверхностей морей и океанов компенсируется за счет процессов массообмена водяных паров посредством воздушных течений и стока рек, впадающих в водные акватории земного шара.

Земная поверхность, поглощая солнечную радиацию и нагреваясь, сама становится источником излучения тепла в атмосферу и через нее в мировое пространство. Чем выше температура поверхности, тем выше излучение. Собственное длинноволновое излучение Земли большей частью задерживается в тропосфере, которая при этом нагревается и излучает радиацию - противоизлучение атмосферы. Разность между излучением земной поверхности и противоизлучением атмосферы называется эффективным излучением. Оно показывает фактическую потерю тепла поверхностью Земли и составляет около 20%.

Атмосфера в отличие от земной поверхности больше излучает, чем поглощает. Дефицит энергии компенсируется приходом тепла от земной поверхности вместе с водяным паром, а также за счет турбулентности (в процессе подъема нагретого у земной поверхности воздуха). Возникающие между низкими и высокими широтами температурные контрасты сглаживаются за счет адвекции - переноса тепла морскими и главным образом воздушными течениями от низких широт к высоким (правая часть рисунка).

Для общегеографических выводов важны также ритмические колебания радиации из-за смены времен года, так как от этого зависит тепловой режим конкретной местности. Отражательные свойства земных покровов, теплоемкость и теплопроводность сред еще больше усложняют перенос тепловой энергии и распределение теплоэнергетических характеристик.

Количество тепла описывается уравнением теплового баланса, которое у каждого географического района свое. Его важнейшим компонентом является радиационный баланс земной поверхности. Солнечная радиация расходуется на нагревание почвы и воздуха (и воды), испарение, таяние снега и льда, фотосинтез, почвообразовательные процессы и выветривание горных пород. Поскольку для природы всегда характерно равновесие, равенство наблюдается между приходом энергии и ее расходом, что выражается уравнением теплового баланса земной поверхности:

где R - радиационный баланс; LE - тепло, затрачиваемое на испарение воды и таяние снега или льда (L - скрытое тепло испарения или парообразования; Е - скорость испарения или конденсации); А - горизонтальный перенос тепла воздушными и океаническими течениями или турбулентным потоком; Р - теплообмен земной поверхности с воздухом; В - теплообмен земной поверхности с почвой и горными породами; F - расход энергии на фотосинтез; С - расход энергии на почвообразование и выветривание; Q+q - суммарная радиация; а - альбедо; I - эффективное излучение атмосферы.

На долю энергии, расходуемой на фотосинтез и почвообразование, приходится менее 1% радиационного бюджета, поэтому в уравнении эти составляющие часто опускаются. Однако в реальности они могут иметь значение, поскольку эта энергия обладает способностью аккумулироваться и преобразовываться в другие виды (превратимая энергия). Маломощный, но продолжительный (сотни миллионов лет) процесс накопления превратимой энергии оказал существенное влияние на географическую оболочку. В ней скопилось около 11· 10 14 Дж/м2 энергии в рассеянном органическом веществе в осадочных породах, а также в виде каменного угля, нефти, сланцев.

Уравнение теплового баланса можно вывести для любого географического района и отрезка времени, учитывая специфичность климатических условий и вклад компонентов (для суши, океана, районов с льдообразованием, незамерзающих и др.).

Перенос и распределение тепла

Перенос тепла от поверхности в атмосферу происходит тремя путями: тепловое излучение, нагревание или охлаждение воздуха при контакте с сушей, испарение воды. Водяные пары, поднимаясь в атмосферу, конденсируются и образуют облака или выпадают в виде осадков, а выделяемое при этом тепло поступает в атмосферу. Поглощенная атмосферой радиация и тепло конденсации водяных паров задерживают потерю тепла земной поверхностью - сайт. Над засушливыми районами это влияние уменьшается, и мы наблюдаем самые большие суточные и годовые амплитуды температуры. Наименьшие амплитуды температуры присущи океаническим районам. Являясь огромным резервуаром, океан хранит больше тепла, что ослабляет годовые колебания температуры вследствие высокой удельной теплоемкости воды. Таким образом, на Земле вода играет важную роль как аккумулятор тепла.

Структура теплового баланса зависит от географической широты и типа ландшафта, который, в свою очередь, сам зависит от нее. Она существенно изменяется не только при движении от экватора к полюсам, но и при переходе с суши на море. Суша и океан различаются как по величине поглощенной радиации, так и по характеру распределения тепла. В океане летом тепло распространяется на глубину до нескольких сотен метров. За теплый сезон в океане накапливается от 1,3· 10 9 до 2,5· 10 9 Дж/м2. На суше тепло распространяется на глубину всего нескольких метров, и за теплый сезон здесь накапливается около 0,1· 10 9 Дж/м2, что в 10-25 раз меньше, чем в океане. Благодаря большому запасу тепла, океан зимой охлаждается меньше, чем суша. Расчеты показывают, что разовое содержание тепла в океане в 21 раз превышает ее поступление к земной поверхности в целом. Даже в 4-метровом слое океанической воды тепла в 4 раза больше, чем во всей атмосфере.

До 80% энергии, поглощаемой океаном, расходуется на испарение воды. Это составляет 12· 10 23 Дж/м2 в год, что в 7 раз больше аналогичной статьи теплового баланса суши. 20% энергии расходуется на турбулентный теплообмен с атмосферой (что также больше, чем на суше). Вертикальный теплообмен океана с атмосферой стимулирует и горизонтальный перенос тепла, благодаря чему оно частично оказывается на суше. В теплообмене океана и атмосферы участвует 50-метровый слой воды.

Земная поверхность, поглощая солнечную радиацию и нагреваясь, сама становится источником излучения тепла в атмосферу и через нее в мировое пространство. Чем выше температура поверхности, тем выше излучение. Собственное длинноволновое излучение Земли большей частью задерживается в тропосфере, которая при этом нагревается и излучает радиацию - противоизлучение атмосферы. Разность между излучением земной поверхности и противоизлучением атмосферы называется эффективным излучением. Оно показывает фактическую потерю тепла поверхностью Земли и составляет около 20%.

Рис. 7.2. Схема среднегодового радиационного и теплового баланса, (по К.Я.Кондратьеву, 1992)

Атмосфера в отличие от земной поверхности больше излучает, чем поглощает. Дефицит энергии компенсируется приходом тепла от земной поверхности вместе с водяным паром, а также за счет турбулентности (в процессе подъема нагретого у земной поверхности воздуха). Возникающие между низкими и высокими широтами температурные контрасты сглаживаются за счет адвекции - переноса тепла морскими и главным образом воздушными течениями от низких широт к высоким (рис. 7.2, правая часть). Для общегеографических выводов важны также ритмические колебания радиации из-за смены времен года, так как от этого зависит тепловой режим конкретной местности. Отражательные свойства земных покровов, теплоемкость и теплопроводность сред еще больше усложняют перенос тепловой энергии и распределение теплоэнергетических характеристик.

Уравнение теплового баланса. Количество тепла описывается уравнением теплового баланса, которое у каждого географического района свое. Его важнейшим компонентом является радиационный баланс земной поверхности. Солнечная радиация расходуется на нагревание почвы и воздуха (и воды), испарение, таяние снега и льда, фотосинтез, почвообразовательные процессы и выветривание горных пород. Поскольку для природы всегда характерно равновесие, равенство наблюдается между приходом энергии и ее расходом, что выражается уравнением теплового баланса земной поверхности:

где R - радиационный баланс; LE - тепло, затрачиваемое на испарение воды и таяние снега или льда (L - скрытое тепло испарения или парообразования; Е - скорость испарения или конденсации); А - горизонтальный перенос тепла воздушными и океаническими течениями или турбулентным потоком; Р - теплообмен земной поверхности с воздухом; В - теплообмен земной поверхности с почвой и горными породами; F - расход энергии на фотосинтез; С - расход энергии на почвообразование и выветривание; Q+q - суммарная радиация; а - альбедо; I - эффективное излучение атмосферы.


На долю энергии, расходуемой на фотосинтез и почвообразование, приходится менее 1% радиационного бюджета, поэтому в уравнении эти составляющие часто опускаются. Однако в реальности они могут иметь значение, поскольку эта энергия обладает способностью аккумулироваться и преобразовываться в другие виды (превратимая энергия). Маломощный, но продолжительный (сотни миллионов лет) процесс накопления превратимой энергии оказал существенное влияние на географическую оболочку. В ней скопилось около 11×10 14 Дж/м 2 энергии в рассеянном органическом веществе в осадочных породах, а также в виде каменного угля, нефти, сланцев.

Уравнение теплового баланса можно вывести для любого географического района и отрезка времени, учитывая специфичность климатических условий и вклад компонентов (для суши, океана, районов с льдообразованием, незамерзающих и др.).

Перенос и распределение тепла. Перенос тепла от поверхности в атмосферу происходит тремя путями: тепловое излучение, нагревание или охлаждение воздуха при контакте с сушей, испарение воды. Водяные пары, поднимаясь в атмосферу, конденсируются и образуют облака или выпадают в виде осадков, а выделяемое при этом тепло поступает в атмосферу. Поглощенная атмосферой радиация и тепло конденсации водяных паров задерживают потерю тепла земной поверхностью. Над засушливыми районами это влияние уменьшается, и мы наблюдаем самые большие суточные и годовые амплитуды температуры. Наименьшие амплитуды температуры присущи океаническим районам. Являясь огромным резервуаром, океан хранит больше тепла, что ослабляет годовые колебания температуры вследствие высокой удельной теплоемкости воды. Таким образом, на Земле вода играет важную роль как аккумулятор тепла.

Структура теплового баланса зависит от географической широты и типа ландшафта, который, в свою очередь, сам зависит от нее. Она существенно изменяется не только при движении от экватора к полюсам, но и при переходе с суши на море. Суша и океан различаются как по величине поглощенной радиации, так и по характеру распределения тепла. В океане летом тепло распространяется на глубину до нескольких сотен метров. За теплый сезон в океане накапливается от 1,3×10 9 до 2,5×10 9 Дж/м 2 . На суше тепло распространяется на глубину всего нескольких метров, и за теплый сезон здесь накапливается около 0,1×10 9 Дж/м 2 , что в 10-25 раз меньше, чем в океане. Благодаря большому запасу тепла, океан зимой охлаждается меньше, чем суша. Расчеты показывают, что разовое содержание тепла в океане в 21 раз превышает ее поступление к земной поверхности в целом. Даже в 4-метровом слое океанической воды тепла в 4 раза больше, чем во всей атмосфере.

До 80% энергии, поглощаемой океаном, расходуется на испарение воды. Это составляет 12×10 23 Дж/м 2 в год, что в 7 раз больше аналогичной статьи теплового баланса суши. 20% энергии расходуется на турбулентный теплообмен с атмосферой (что также больше, чем на суше). Вертикальный теплообмен океана с атмосферой стимулирует и горизонтальный перенос тепла, благодаря чему оно частично оказывается на суше. В теплообмене океана и атмосферы участвует 50-метровый слой воды.

Изменение радиационного и теплового баланса. Годовая сумма радиационного баланса почти всюду на Земле положительна, за исключением ледниковых районов Гренландии и Антарктиды. Его среднегодовые значения уменьшаются в направлении от экватора к полюсам, следуя закономерности распределения солнечной радиации по земному шару (рис. 7.3). Радиационный баланс над океаном больше, чем над сушей. Это связано с меньшим альбедо водной поверхности, повышенным влагосодержанием в экваториальных и тропических широтах. Сезонные изменения радиационного баланса происходят на всех широтах, но с разной степенью выраженности. В низких широтах сезонность определяется режимом осадков, так как термические условия здесь мало изменяются. В умеренных и высоких широтах сезонность определяется термическим режимом: радиационный баланс меняется от положительного летом до отрицательного зимой. Отрицательный баланс холодного периода года в умеренных и полярных широтах частично компенсируется за счет адвекции теплоты воздушными и морскими течениями из низких широт.

Для сохранения энергетического баланса Земли должен существовать перенос тепла в направлении полюсов. Несколько менее из этого тепла переносится океаническими течениями, остальное атмосферой. Различия в нагревании Земли обусловливают ее действия как географической тепловой машины, в которой происходит передача тепла от нагревателя к холодильнику. В природе этот процесс реализуется в двух формах: во-первых, термодинамические пространственные неоднородности формируют планетарные системы ветров и морских течений; во-вторых, данные планетарные системы сами участвуют в перераспределении тепла и влаги на земном шаре. Таким образом, от экватора в направлении к полюсам потоками воздуха или океаническими течениями переносится тепло, а к экватору переносятся холодные воздушные или водные массы. На рис. 7.4 показан перенос теплой поверхностной воды в Атлантическом океане к полюсу. Перенос тепла по направлению к полюсам достигает максимума около широты 40° и становится равным нулю у полюсов.

Приток солнечной радиации зависит не только от географической широты, но и от времени года (табл. 7.4). Примечательно, что в летний период в Арктику поступает тепла даже больше, чем на экватор, однако вследствие высокого альбедо арктических морей льды здесь не тают.

Распределение температуры. На горизонтальное распределение температуры влияют географическое положение, рельеф, свойства и вещественный состав подстилающей поверхности, системы океанических течений и характер атмосферной циркуляции в приземном и приводном слоях.

Рис. 7.3. Распределение среднегодового радиационного баланса на земной поверхности, МДж/(м 2 ×год) (по С.П.Хромову и М.А.Петросянцу, 1994)

Рис. 7.4. Перенос тепла в северной части Атлантического океана, °С (по С. Нешиба, 1991). Заштрихованы районы, где поверхностные воды теплее, чем в среднем по океану. Цифры обозначают объемные переносы воды (млн м 3 /с), стрелки - направление течений, жирная линия - Гольфстрим

Таблица 7.4. Суммарная радиация, поступающая на земную поверхность (Н.И.Егоров, 1966)

Поглощая лучистую энергию Солнца, Земля сама становится источником излучения. Однако радиация Солнца и радиация Земли существенно различны. Прямая, рассеянная и отраженная радиация Солнца имеет длину волн, заключающуюся в интервале от 0,17 до 2-4 мк, и называется коротковолновой радиацией. Нагретая поверхность земли в соответствии со своей температурой излучает радиацию в основном в интервале длин волн от 2-4 до 40 мк и называется длинноволновой. Вообще говоря, как радиация Солнца, так и радиация Земли имеют волны всех длин. Но основная часть энергии (99,9%) заключается в указанном интервале длин волн. Различие в длине волн радиации Солнца и Земли играет большую роль в тепловом режиме поверхности земли.

Таким образом, нагреваясь лучами Солнца, наша планета сама становится источником излучения. Испускаемые земной поверхностью длинноволновые, или тепловые, лучи, направленные снизу вверх, в зависимости от длины волны или беспрепятственно уходят через атмосферу, или задерживаются ею. Установлено, что излучение волн длиной 9-12 мк свободно уходит в межзвездное пространство, вследствие чего поверхность земли теряет некоторую часть своего тепла.

Для решения задачи теплового баланса земной поверхности и атмосферы следовало определить, какое количество солнечной энергии поступает в различные районы Земли и какое количество этой энергии преобразуется в другие виды.

Попытки рассчитать количество поступающей солнечной энергии на земную поверхность относятся к середине XIX века, после того как были созданы первые актинометрические приборы. Однако только в 40-х годах XX века началась широкая разработка задачи изучения теплового баланса. Этому способствовало широкое развитие актинометрической сети станций в послевоенные годы, особенно в период подготовки к Международному Геофизическому Году. Только в СССР число актинометрических станций к началу МГГ достигло 200. При этом значительно расширился объем наблюдений на этих станциях. Кроме измерения коротковолновой радиации Солнца, определялся радиационный баланс земной поверхности, т. е. разность между поглощенной коротковолновой радиацией и длинноволновым эффективным излучением подстилающей поверхности. На ряде актинометрических станций были организованы наблюдения за температурой и влажностью воздуха на высотах. Это позволило произвести вычисления затрат тепла на испарение и турбулентный теплообмен.

Помимо систематических актинометрических наблюдений, ведущихся на сети наземных актинометрических станций по однотипной программе, в последние годы проводятся экспериментальные работы по исследованию радиационных потоков в свободной атмосфере. С этой целью на ряде станций с помощью специальных радиозондов производятся систематические измерения баланса длинноволновой радиации на различных высотах в тропосфере. Эти наблюдения, а также данные о потоках радиации в свободной атмосфере, полученные с помощью свободных аэростатов, самолетов, геофизических ракет и искусственных спутников Земли, позволили изучить режим составляющих теплового баланса.

Используя материалы экспериментальных исследований и широко применяя расчетные методы, сотрудниками Главной геофизической обсерватории им. А. И. Воейкова Т. Г. Берлянд, Н. А. Ефимовой, Л. И. Зубенок, Л. А. Строкиной, К. Я. Винниковым и другими под руководством М. И. Будыко в начале 50-х годов впервые была построена серия карт составляющих теплового баланса для всего земного шара. Эта серия карт вначале была опубликована в 1955 г. В изданном Атласе содержались карты суммарного распределения солнечной радиации, радиационного баланса, затраты тепла на испарение и турбулентный теплообмен в среднем за каждый месяц и год. В последующие годы, в связи с получением новых данных, особенно за период МГГ, были уточнены данные составляющих теплового баланса и построена новая серия карт, которые были изданы в 1963 г.

Тепловой баланс земной поверхности и атмосферы, учитывая приток и отдачу тепла для системы Земля - атмосфера, отражает закон сохранения энергии. Чтобы составить уравнение теплового баланса Земля - атмосфера, следует учесть все тепло - получаемое и расходуемое,- с одной стороны, всей Землей вместе с атмосферой, а с другой - отдельно подстилающей поверхностью земли (вместе с гидросферой и литосферой) и атмосферой. Поглощая лучистую энергию Солнца, земная поверхность часть этой энергии теряет через излучение. Остальная часть расходуется на нагревание этой поверхности и нижних слоев атмосферы, а также на испарение. Нагревание подстилающей поверхности сопровождается теплоотдачей в почву, а если почва влажная, то одновременно происходит затрата тепла и на испарение почвенной влаги.

Таким образом, тепловой баланс Земли в целом складывается из четырех составляющих.

Радиационный баланс ( R ). Он определяется разностью между количеством поглощенной коротковолновой радиации Солнца и длинноволновым эффективным излучением.

Теплообмен в почве, характеризующий процесс теплопередачи между поверхностными и более глубокими слоями почвы (А). Этот теплообмен зависит от теплоемкости и теплопроводности почвы.

Турбулентный теплообмен между земной поверхностью и атмосферой (Р). Он определяется количеством тепла, которое подстилающая поверхность получает или отдает атмосфере в зависимости от соотношения между температурами подстилающей поверхности и атмосферы.

Тепло, затрачиваемое на испарение ( LE ). Оно определяется произведением скрытой теплоты парообразования ( L ) на испарение (Е).

Эти составляющие теплового баланса связаны между собою следующим соотношением:

R = A + P + LE

Расчеты составляющих теплового баланса позволяют определить, как преобразуется на поверхности земли и в атмосфере приходящая солнечная энергия. В средних и высоких широтах приток солнечной радиации летом положителен, зимой отрицателен. Согласно вычислениям южнее 39° с. ш. баланс лучистой энергии положителен в течение всего года, На широте около 50° на Европейской территории СССР баланс положителен с марта по ноябрь и отрицателен в течение трех зимних месяцев. На широте 80° положительный радиационный баланс наблюдается лишь в период май - август.

В соответствии с расчетами теплового баланса Земли суммарная солнечная радиация, поглощенная поверхностью земли в целом, составляет 43% от солнечной радиации, приходящей на внешнюю границу атмосферы. Эффективное излучение с земной поверхности равно 15% этой величины, радиационный баланс - 28%, затрата тепла на испарение - 23% и турбулентная теплоотдача - 5%.

Рассмотрим теперь некоторые результаты расчета составляющих теплового баланса для системы Земля - атмосфера. Здесь приведены четыре карты: суммарной радиации за год, радиационного баланса, затраты тепла на испарение и затраты тепла на нагревание воздуха путем турбулентного теплообмена, заимствованные из Атласа теплового баланса земного шара (под ред. М. И. Будыко). Из карты, изображенной на рисунке 10, следует, что наибольшие годовые величины суммарной радиации приходятся на засушливые зоны Земли. В частности, в Сахарской и Аравийской пустынях суммарная радиация за год превышает 200 ккал/см 2 , а в высоких широтах обоих полушарий она не превышает 60-80 ккал/см 2 .

На рисунке 11 приведена карта радиационного баланса. Легко видеть, что в высоких и средних широтах радиационный баланс возрастает в сторону низких широт, что связано с увеличением суммарной и поглощенной радиации. Интересно отметить, что, в отличие от изолиний суммарной радиации, изолинии радиационного баланса при переходе с океанов на материки разрываются, что связано с различием альбедо и эффективного излучения. Последние меньше для водной поверхности, поэтому радиационный баланс океанов превышает радиационный баланс материков.

Наименьшие годовые суммы (около 60 ккал/см 2) характерны для районов, где преобладает облачность, как и в сухих областях, где высокие значения альбедо и эффективного излучения уменьшают радиационный баланс. Наибольшие годовые суммы радиационного баланса (80-90 ккал/см 2) характерны для малооблачных, но сравнительно влажных тропических лесов и саванн, где приход радиации хотя и значителен, однако альбедо и эффективное излучение больше, чем в пустынных районах Земли.

Распределение годовых величин испарения представлено на рисунке 12. Затрата тепла на испарение, равная произведению величины испарения на скрытую теплоту парообразования (L Е), определяется в основном величиной испарения, так как скрытая теплота парообразования в естественных условиях меняется в небольших пределах и в среднем равна 600 кал на грамм испаряющейся воды.

Как следует из приведенного рисунка, испарение с суши в основном зависит от запасов тепла и влаги. Поэтому максимальные годовые суммы испарения с поверхности суши (до 1000 мм) имеют место в тропических широтах, где значительные тепловые




ресурсы сочетаются с большим увлажнением. Однако океаны являются наиболее важными источниками испарения. Максимальные величины его здесь достигают 2500-3000 мм. При этом наибольшее испарение происходит в районах со сравнительно высокими значениями температуры поверхностных вод, в частности в зонах теплых течений (Гольфстрим, Куро-Сиво и др.). Наоборот, в зонах холодных течений величины испарения небольшие. В средних широтах существует годовой ход испарения. При этом, в отличие от суши, максимальное испарение на океанах наблюдается в холодное время года, когда сочетаются большие вертикальные градиенты влажности воздуха с повышенными скоростями ветра.

Турбулентный теплообмен подстилающей поверхности с атмосферой зависит от радиационных условий и условий увлажнения. Поэтому наибольшая турбулентная передача тепла осуществляется в тех районах суши, где сочетается большой приток радиации с сухостью воздуха. Как видно из карты годовых величин турбулентного теплообмена (рис. 13), это зоны пустынь, где величина его достигает 60 ккал/см 2 . Малы величины турбулентного теплообмена в высоких широтах обоих полушарий, а также, на океанах. Максимумы годовых величин можно обнаружить в зоне теплых морских течений (более 30 ккал/см 2 год), где создаются большие разности температур между водой и воздухом. Поэтому наибольшая теплоотдача на океанах происходит в холодную часть года.

Тепловой баланс атмосферы определяется поглощением коротковолновой и корпускулярной радиации Солнца, длинноволнового излучения, лучистым и турбулентным теплообменом, адвекцией тепла, адиабатическими процессами и др. Данные о приходе и расходе солнечного тепла используются метеорологами для объяснения сложной циркуляции атмосферы и гидросферы, тепло- и влагооборота и многих других процессов и явлений, происходящих в воздушной и водной оболочках Земли.

— Источник—

Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.- 318 с.

Post Views: 1 224

Остановимся сначала на тепловых условиях земной поверхности и самых верхних слоев почвы и водоемов. Это необходимо потому, что нижние слои атмосферы нагреваются и охлаждаются больше всего путем радиационного и нерадиационного обмена теплом с верхними слоями почвы и воды. Поэтому изменения температуры в нижних слоях атмосферы прежде всего определяются изменениями температуры земной поверхности, следуют за этими изменениями.

Земная поверхность, т.е. поверхность почвы или воды (а также растительного, снежного, ледяного покрова), непрерывно и разными способами получает и теряет тепло. Через земную поверхность тепло передается вверх – в атмосферу и вниз – в почву или в воду.

Во-первых, на земную поверхность поступают суммарная радиация и встречное излучение атмосферы. Они в большей или меньшей степени поглощаются поверхностью, т.е. идут на нагревание верхних слоев почвы и воды. В то же время земная поверхность излучает сама и тем самым теряет тепло.

Во-вторых, к земной поверхности приходит тепло сверху, из атмосферы, путем турбулентной теплопроводности. Тем же способом тепло уходит от земной поверхности в атмосферу. Путем теплопроводности тепло также уходит от земной поверхности вниз, в почву и воду, либо приходит к земной поверхности из глубины почвы и воды.

В-третьих, земная поверхность получает тепло при конденсации на ней водяного пара из воздуха или теряет тепло при испарении с нее воды. В первом случае выделяется скрытая теплота, во втором теплота переходит в скрытое состояние.

На менее важных процессах (например, затратах тепла на таяние снега, лежащего на поверхности, или распространении тепла в глубь почвы вместе с водой осадков) останавливаться не будем.

Будем считать земную поверхность идеализированной геометрической поверхностью, не имеющей толщины, теплоемкость которой, следовательно, равна нулю. Тогда ясно, что в любой промежуток времени от земной поверхности будет уходить вверх и вниз в совокупности такое же количество тепла, какое она за это же время получает сверху и снизу. Естественно, что если рассматривать не поверхность, а некоторый слой земной поверхности, то здесь равенства приходящих и уходящих потоков тепла может и не быть. В таком случае избыток приходящих потоков тепла над уходящими потоками в соответствии с законом сохранения энергии пойдет на нагревание этого слоя, а в обратном случае - на его охлаждение.

Итак, алгебраическая сумма всех приходов и расходов тепла на земной поверхности должна быть равной нулю – это уравнение теплового баланса земной поверхности. Чтобы написать уравнение теплового баланса, объединим поглощенную радиацию и эффективное излучение в радиационный баланс:

B = (S sin h + D )(1 – A ) – E s .

Приход тепла из воздуха или отдачу его в воздух путем теплопроводности обозначим буквой Р . Такой же приход или расход путем теплообмена с более глубокими слоями почвы или воды обозначим G. Потерю тепла при испарении или приход его при конденсации на земную поверхность обозначим LE , где L – удельная теплота испарения и Е – масса испарившейся или сконденсировавшейся воды. Вспомним еще одну составляющую – энергию, пошедшую на фотосинтетические процессы – ФАР, впрочем, весьма маленькую в сравнении с остальными, поэтому в большинстве случаев ее не указывают в уравнении. Тогда уравнение теплового баланса земной поверхности примет вид

В + Р + G + LE + Q ФАР = 0 или В + Р + G + LE = 0

Можно еще отметить, что смысл уравнения состоит в том, что радиационный баланс на земной поверхности уравновешивается нерадиационной передачей тепла.

Уравнение теплового баланса действительно для любого времени, в том числе и для многолетнего периода.

Из того, что тепловой баланс земной поверхности равен нулю, не следует, что температура поверхности не меняется. Если передача тепла направлена вниз, то тепло, приходящее к поверхности сверху и уходящее от нее вглубь, в значительной части остается в самом верхнем слое почвы или воды – в так называемом деятельном слое. Температура этого слоя, следовательно, и температура земной поверхности при этом возрастают. При передаче тепла через земную поверхность снизу вверх, в атмосферу, тепло уходит, прежде всего, из деятельного слоя, вследствие чего температура поверхности падает.

От суток к суткам и от года к году средняя температура деятельного слоя и земной поверхности в любом месте меняется мало. Это значит, что за сутки в глубь почвы или воды попадает днем столько же тепла, сколько уходит из нее ночью. Так как за летние сутки тепла уходит вниз все-таки больше, чем приходит снизу, слои почвы и воды и их поверхность день ото дня нагреваются. Зимой происходит обратный процесс. Сезонные изменения прихода-расхода тепла в почве и воде за год почти уравновешиваются, и средняя годовая температура земной поверхности и деятельного слоя год от года меняется мало.

Существуют резкие различия в нагревании и тепловых особенностях поверхностных слоев почвы и верхних слоев водных бассейнов. В почве тепло распространяется по вертикали путем молекулярной теплопроводности, а в легкоподвижной воде – также и путем турбулентного перемешивания водных слоев, намного более эффективного. Турбулентность в водоемах обусловлена, прежде всего, волнением и течениями. В ночное время суток и в холодное время года к такого рода турбулентности присоединяется термическая конвекция: охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев. В океанах и морях некоторую роль в перемешивании слоев и в связанной с ним передаче тепла играет также испарение. При значительном испарении с поверхности моря верхний слой воды становится более соленым и поэтому более плотным, вследствие чего вода опускается с поверхности в глубину. Кроме того, радиация глубже проникает в воду в сравнении с почвой. Наконец, теплоемкость воды более значительна, чем почвы, и одно и то же количество тепла нагревает массу воды до меньшей температуры, чем такую же массу почвы.

В результате суточные колебания температуры в воде распространяются на глубину порядка десятков метров, а в почве – менее одного метра. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве – только на 10–20 м.

Итак, тепло, приходящее днем и летом на поверхность воды, проникает до значительной глубины и нагревает большую толщу воды. Температура верхнего слоя и самой поверхности воды повышается при этом мало. В почве приходящее тепло распределяется в тонком верхнем слое, который сильно нагревается. Член G в уравнении теплового баланса для воды гораздо больше, чем для почвы, а P соответственно меньше.

Ночью и зимой вода теряет тепло из поверхностного слоя, но взамен его приходит накоп-ленное тепло из нижележащих слоев. Поэтому температура на поверхности воды понижается медленно. На поверхности почвы температура при отдаче тепла падает быстро: тепло, накопленное в тонком верхнем слое, быстро из него и уходит без восполнения снизу.

В результате днем и летом температура на поверхности почвы выше, чем температура на поверхности воды; ночью и зимой ниже. Это значит, что суточные и годовые колебания температуры на поверхности почвы больше, и значительно больше, чем на поверхности воды.

Вследствие указанных различий в распространении тепла водный бассейн за теплое время года накапливает в достаточно мощном слое воды большое количество тепла, которое отдает в атмосферу в холодный сезон. Почва в течение теплого сезона отдает по ночам большую часть того тепла, которое получает днем, и мало накапливает его к зиме. В результате температура воздуха над морем летом ниже, а зимой выше, чем над сушей.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков
Химический состав осадков
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png