Глава 15. Теорема об изменении кинетической энергии.

15.3. Теорема об изменении энергии кинетической точки и твердого тела при поступательном движении.

15.3.1. Какую работу совершают действующие на материальную точку си­лы, если ее кинетическая энергия уменьшается с 50 до 25 Дж? (Ответ -25)

15.3.2. Свободное падение материальной точки массой m начинается из состояния покоя. Пренебрегая сопротивлением воздуха, опреде­лить путь, пройденный точкой к моменту времени, когда она имеет скорость 3 м/с. (Ответ 0,459)

15.3.3. Материальная точка массой m = 0,5 кг брошена с поверхности Земли с начальной ско­ростью v о = 20 м/с и в положении М имеет скорость v = 12 м/с. Определить работу силы тяжести при перемещении точки из положения М о в положение М (Ответ -64)

15.3.4. Материальная точка массой m брошена с поверхности Земли под углом α = 60° к гори­зонту с начальной скоростью v 0 = 30 м/с. Определить наибольшую высоту h подъема точки. (Ответ 34,4)

15.3.5. Тело массой m = 2 кг от толчка поднимается по наклонной плос­кости с начальной скоростью v о = 2 м/с. Определись работу силы тяжести на пути, пройденном телом до остановки. (Ответ -4)

15.3.6. Материальная точка М массой m, подве­шенная на нити длиной ОМ = 0,4 м к непод­вижной точке О, отведена на угол α = 90° от положения равновесия и отпущена без началь­ной скорости. Определить скорость этой точки во время ее прохождения через положение рав­новесия. (Ответ 2,80)

15.3.7. Кабина качелей подвешена на двух стерж­нях длиной l = 0,5 м. Определить скорость кабины при прохождении ею нижнего положе­ния, если в начальный момент стержни были отклонены на угол φ = 60° и отпущены без начальной скорости. (Ответ 2,21)

15.3.8. Материальная точка М массой m движется под действием силы тяжести по внутренней поверхности полуцилиндра радиуса r = 0,2 м. Определить скорость материальной точки в точке В поверхности, если ее скорость в точке A равна нулю. (Ответ 1,98)

15.3.9. По проволоке АВС, расположенной в вер­тикальной плоскости и изогнутой в виде дуг окружностей радиусов r 1 , = 1 м, r 2 = 2 м, может скользить без трения кольцо D массой m. Определить скорость кольца в точке С, если его скорость в точке А равна нулю. (Ответ 9,90)

15.3.10. По горизонтальной плоскости движется тело массой m = 2 кг, которому была сооб­щена начальная скорость v 0 = 4 м/с. До оста­новки тело прошло путь, равный 16 м. Опре­делить модуль силы трения скольжения между телом и плоскостью. (Ответ 1)

15.3.11. Тело массой m = 100 кг начинает движе­ние из состояния покоя по горизонтальной шероховатой плоскости под действием постоян­ной силы F. Пройдя путь, равный 5 м, скорость тела становится равной 5 м/с. Определить модуль силы F, если сила трения скольжения F тр = 20 Н. (Ответ 270)

15.3.12. Хоккеист, находясь на расстоянии 10 м от ворот, клюшкой сооб­щает шайбе, лежащей на льду, скорость 8 м/с. Шайба, скользя по по­верхности льда, влетает в ворота со скоростью 7,7 м/с. Определить коэффициент трения скольжения между шайбой и поверхностью льда.
(Ответ 2,40 10 -2)

15.3.13. По наклонной плоскости спускается без начальной скорости тело массой m = 1кг. Оп­ределить кинетическую энергию тела в момент времени, когда оно прошло путь, равный 3 м, если коэффициент трения скольжения между телом и наклонной плоскостью f = 0,2. (Ответ 9,62)

15.3.14. По наклонной плоскости спускается без начальной скорости груз массой m. Какую ско­рость v будет иметь груз, пройдя путь, равный 4м от начала движения, если коэффициент трения скольжения между грузом и наклонной плоскостью равен 0,15? (Ответ 5,39)

15.3.15. К ползуну 1 массой m = 1 кг прикреплена пружина 2. Пружину сжимают из свободного состояния на величину 0,1 м, после чего груз отпускают без начальной скорости. Определить жесткость пружины, если груз, пройдя путь, равный 0,1 м, приобретает скорость 1 м/с.
(Ответ 100)

Различных материалов по поверхности.

Цель работы: определение коэффициентов трения качения и трения скольжения.

Краткая теория к изучению движения тела по наклонной плоскости

При относительном перемещении двух соприкасающихся тел или при попытке вызвать такое перемещение возникают силы трения. Различают три вида трения, возникающего при контакте твердых тел: трение скольжения, покоя и качения. Трение скольжения и трение качения всегда связаны с необратимым процессом – превращением механической энергии в тепловую.

Рис. 5.15.1

Сила трения скольжения действует на контактирующие друг с другом тела и направлена в сторону, противоположную скорости относительного движения. Сила нормальной реакции опоры и сила трения являются нормальной и тангенциальной составляющими одной и той же силы , которая называется силой реакции опоры (рис. 5.15.1). Модули сил F тр. и N связаны между собой приближенным эмпирическим законом Амонтона-Кулона:

(5.15.1)

В этой формуле µ - коэффициент трения, зависящий от материала и качества обработки соприкасающихся поверхностей, слабо зависящий от скорости скольжения и практически не зависящий от площади контакта.

Рис. 5.15.2

Сила трения покоя принимает значение, обеспечивающее равновесие, т.е. состояние покоя тела. Угол α между направлением силы и нормалью к поверхности может принимать значения в промежутке от нуля до максимального, обусловленного законом Амонтона-Кулона.

Сила трения качения возникает из-за деформации материалов поверхностей катящегося тела и опоры, а также из-за разрыва временно образующихся молекулярных связей в месте контакта.

Рассмотрим лишь первую из названных причин, поскольку вторая играет заметную роль только при хорошей полировке тел. При качении цилиндра или шара по плоской поверхности в месте контакта и перед ним возникает деформация катящегося тела или опоры. Тело оказывается в ямке (рис.3.2) и вынуждено все время из нее выкатываться. Из-за этого точка приложения силы реакции опоры смещается немного вперед по ходу движения, а линия действия этой силы отклоняется немного назад. Нормальная составляющая силы есть сила упругости, а тангенциальная – сила трения качения. Для силы трения качения справедлив приближенный закон Кулона

F тр кач . = k (N n / R ).

(5.15.2)

В этом выражении R - радиус катящегося тела, а k -коэффициент трения качения, имеющий размерность длины.

Движение тела по наклоной плоскости под действием сил тяжести и трения

При движении одиночного тела по наклоной плоскости движущей силой является сила тяжести F=mg (Рис.5.15.3)

Рис. 5.15.3

Распределим все силы действующие на тело по осям OX и OY. Ось OX направим вдоль наклоной плоскости, а OY перпендикулярно ей.

  • OX: m a = mg sin a – F тр ; F тр = µN;
  • OY: 0 = mg cos a –N; N = mg cos a;
  • m a = mg sin a – mg µ cos a;
  • a = g sin a – g µ cos a; g µ cos a = g sin a – a ;
  • µ = (g sin a – a )/ (g cos a)
  • µ=tg a – a/g cos a

Последние уравнение определяет коэффициент трения

Движение тела по наклоной плоскости под действием сил тяжести, трения и силы натяжения нити направленной вдоль скорости движения

Рис. 5.15.4

Распишем все силы действующие на тело по осям OX и OY. Ось OX направим вдоль наклоной плоскости, а OY перпендикулярно ей.

  • OX: m 1 a = -m 1 g sin a – F тр + T; F тр = µN;
  • OY: 0 = m 1 g cos a –N; N = m 1 g cos a;
  • m 1 a =- m 1 g sin a – m 1 g µ cos a+m 2 g;
  • m 1 a =m 2 g – m 1 g sin a – m 1 g µ cos a;
  • m 1 g µ cos a =m 2 g – m 1 g sin α – m 1 a ;
  • µ = (m 2 g – m 1 g sin a – m 1 a )/ (m 1 g cos a)

Движение тела по наклоной плоскости под действием сил тяжести, трения и силы натяжения нити направленной перепендикулярно скорости движения

Рис. 5.15.5

Движение тела по дугообразной траектории качественно отличается от движения тела по прямолинейной в первую очередь за счет появления центростремительного ускорения. В данной лабораторной работе предлагается рассчитать тангенсальное α τ и нормальное α n ускорение тела на основе снятых прибором измерений. Коэффициент трения взять из предыдущих опытов.

Описания и правила пользования:

Установка состоит из платформы с рабочей длиной 140 см с расположенной вверху шкалой из черно-белых штрихов и электронного устройства для снятия данных, выступающего в качестве. Платформа может устанавливаться в любом положении от горизонтального положения до 45 0 . Отсчет угла наклона производится по шкале (рис.5.15.6). Для проведения эксперимента, электронное устройство счета помещается под специально отведенные широкие штрихи на шкале для калибровки. После проведения эксперимента электронное устройство через специальный кабель подключают к компьютеру.

Рис. 5.15.6. Общий вид установки

Методика проведения лабораторной работы.

При определении коэффициента трения скольжения, платформа устанавливается под углом большим, чем угол трения.

Образец после калибровки из исходного положения освобождается рукой для свободного движения. При прохождении, устройство фиксирует время между двумя последними штрихами на шкале.

По полученным результатам испытаний рассчитывается, путь, скорость, коэффициент трения скольжения. Строится график пути и скорости от времени.

Расчет погрешности провести по правилам расчета погрешностей косвенных измерений.

Контрольные вопросы:

  1. Силы трения. Объясните причину возникновения силы трения скольжения.
  2. Сила трения качения.

Физический практикум

Задача № 3

Определение коэффициента трения скольжения

При подготовке к выполнению этой задачи следует ознакомиться с теорией по учебным пособиям :

1. Глава 2, И.В. Савельев «Курс общей физики», т.1, М., «Наука».

2. § 1 и 2. П.К. Кашкаров, А.В. Зотеев, А.Н. Невзоров, А.А. Склянкин «Задачи по курсу общей физики с решениями. « Механика. Электричество и магнетизм » , М., изд. МГУ.

  1. Цель работы

Экспериментально проверить законы кинематики и динамики на примере поступательного движения твёрдого тела при наличии сухого трения. Познакомиться с методом определения коэффициента трения скольжения – трибометрией. На основании опытных данных провести расчёт коэффициента трения скольжения.

2. Экспериментальное оборудование, приборы и принадлежности

Л
абораторный стенд (рис. 3.1) включает наклонную направляющую скамью (1) с прикреплённой к ней измерительной линейкой, подвижный брусок (2) (2 шт.), оптические датчики (3) (3 шт.), транспортир для измерения угла наклона направляющей скамьи и модуль сбора сигналов от оптических датчиков (4).

К приборам и принадлежностям относятся компьютер с необходимым программным обеспечением и концентратор для подключения модуля сбора сигналов к компьютеру.

3. Теоретическая часть

А. Общие положения

При анализе движения тел с использованием законов Ньютона приходится иметь дело со следующими видами сил:

      Cила тяжести – проявление гравитационного взаимодействия тел;

      Сила натяжения нитей, пружин, реакции опор и подвесов, и т.д. («силы реакции связей») – проявление сил упругости, возникающих при деформации тел;

      Сила трения . Различают силы сухого и вязкого трения. Сухое трение возникает при возможности движения твёрдого тела по поверхности другого твёрдого тела.

    В условиях, когда на тело, соприкасающееся с некоторой поверхностью, действуют силы, но оно не движется относительно этой поверхности, со стороны последней на тело действует сила трения покоя . Её величина находится из условия отсутствия относительного движения:

(3.1),

где – силы, приложенные к телу, за исключением
. Т.е. пока тело находится в покое, сила трения покоя в точности равна по величине и противоположна по направлению касательной составляющей результирующей сил
. Максимальное значение силы трения покоя равно
, где N нормальная (т.е. перпендикулярная поверхностям) составляющая силы реакции опоры *) , – коэффициент трения скольжения. Коэффициент трения зависит от материала и состояния поверхностей соприкасающихся тел. Для шероховатых поверхностей коэффициент трения больше, чем для отшлифованных. На рис. 3.2 показано как меняется сила сухого трения при нарастании величины силы F . Наклонный участок графика (F тр N ) соответствует покоящемуся телу (F тр пок = F ), а горизонтальный – скольжению.

. (3.2)

* По своей природе силы сухого трения обусловлены электромагнитным взаимодействием молекул поверхностных слоёв соприкасающихся твёрдых тел. Независимость силы трения от скорости соблюдается лишь при не очень больших скоростях, не для всех тел и не при всех качествах обработки поверхностей.

Сила трения скольжения всегда направлена противоположно вектору скорости тела. Этому соответствует векторная запись закона для силы трения скольжения, установленного опытным путем французскими физиками Ш. Кулоном и Г. Амонтоном:

. (3.3)

Здесь – скорость относительного движения тел, v – её модуль.

    При движении тел в жидких или газообразных средах возникает сила вязкого трения . При малых скоростях она пропорциональна скорости движения тела относительно среды:

, (3.4)

где r коэффициент вязкого трения (зависит от размеров и формы тела, от вязких свойств среды).

Система методов измерения сил, коэффициентов трения и износостойкости трущихся тел составляет содержание особого раздела механики – трибометрии. В данной работе для экспериментального определения коэффициента трения скольжения используется трибометр в виде наклонной плоскости с регулируемым углом наклона и системой оптических датчиков для регистрации кинематических характеристик тела, соскальзывающего с неё.

Б. Вывод «расчётной формулы»

Брусок, находящийся на наклонной плоскости направляющей скамьи лабораторного стенда (рис. 3.1) испытывает действие двух сил: силы тяжести
и силы реакции опоры со стороны клина. Последнюю, как обычно, удобно сразу представить в виде двух составляющих – силы трения
вдоль поверхности и «нормальной» составляющей (т.е. перпендикулярной к поверхности) – (см. рис. 3.3). В общем случае сила трения может оказаться направленной как вверх, так и вниз вдоль наклонной плоскости. Однако нас будет интересовать случай, когда брусок либо скользит, либо находится на грани соскальзывания вниз по наклонной плоскости. Тогда сила трения направлена наклонно вниз.

Будем предполагать, что стенд неподвижен относительно инерциальной системы отсчёта, связанной с Землей. Тогда, пока брусок не соскальзывает, сумма действующих на него сил равна нулю. Удобно оси О X и О Y системы координат выбираемой нами инерциальной системы отсчёта расположить вдоль наклонной плоскости и перпендикулярно к ней соответственно (см. рис. 3.3). Условия равновесия для бруска покоящегося на наклонной плоскости имеют вид:

0 = N mg cos. (3.5)

0 = mg sinF тр . (3.6)

Пока угол наклона направляющей мал составляющая силы тяжести вдоль неё («скатывающая сила») уравновешивается силой трения покоя (!). С ростом угла она также растёт (по «закону синуса»). Однако её рост не беспределен. Её максимальное значение, как мы знаем, равно

= N . (3.7)

Этим и определяется максимальное значение угла, при котором брусок не соскальзывает с наклонной плоскости. Совместное решение уравнений (3.5) – (3.7) приводит к условию:


. (3.8)

Иначе говоря, коэффициент трения равен тангенсу угла наклона плоскости к горизонту, при котором начинается соскальзывание тела с наклонной плоскости. На этом основан принцип действия одного из возможных вариантов трибометров.

Однако установить с достаточной точностью предельный угол начала соскальзывания тела с наклонной плоскости («статический метод») довольно сложно. Поэтому в данной экспериментальной работе используется динамический метод определения коэффициента трения скольжения при поступательном движении твёрдого тела (бруска) по наклонной плоскости с ускорением.

При соскальзывании бруска вниз по наклонной плоскости уравнение движения (второй закон Ньютона) в проекциях на координатные оси будет выглядеть следующим образом:

ma = mg sin F тр , (3.9)

0 = N mg cos . (3.10)

Сила трения скольжения равна при этом

F тр = N . (3.11)

Эти уравнения динамики позволяют найти ускорение тела:

a = (sin cos)g . (3.12)

Координата тела, соскальзывающего по наклонной плоскости, меняется по закону равноускоренного движения:

. (3.13)

Оптические датчики, размещённые на фиксированных расстояниях на пути движения бруска, позволяют измерять времена прохождения телом соответствующих участков пути. Используя равенство (3.13), путём численной аппроксимации экспериментальных данных, можно найти величину ускорения a .

По значению рассчитанного ускорения, используя равенство (3.12), можно получить «расчётную формулу» для определения коэффициента трения :

(3.14)

Таким образом, для экспериментального определения коэффициента трения необходимо измерить две величины: угол наклона плоскости и ускорение тела а .

  1. Описание лабораторной установки

Д

Рис. 3.4

Еревянный брусок 1 (рис. 3.4) с приклеенной к нему визирной планкой (2) длиной , скользит по наклонной плоскости, пересекая оптические оси датчиков (3), фиксирующих моменты начала и завершения перекрытия их оптических осей скользящим по наклонной плоскости бруском. Передний фронт импульса оптической оси датчика связан с началом перекрытия оптической оси визирной планкой, а задний фронт – с завершением перекрытия планкой оптической оси. За это время брусок перемещается на расстояние. Таким образом, при последовательном пресечении бруском оптических осей трёх датчиков, фиксируются времена прохождений 6 координатных отметок на оси ОХ (см. рис. 3.5): x 1 , x 1 +, x 2 , x 2 +, x 3 , x 3 +. Экспериментально измеренные значения времени их прохождений t 1 , t 2 , t 3 , t 4 , t 5 , t 6 служат основой для аппроксимации кривой квадратичной зависимости (3.13). В программу аппроксимации необходимо заложить значения координат этих точек x 1 , x 1 +, x 2 , x 2 +, x 3 , x 3 +, которые вносятся в таблицу 1 после фиксации положений 3-х оптических датчиков.

  1. Порядок проведения работы

Параметры установки:

Длина визирной планки бруска: = (110  1) мм ;

Углы наклона направляющей скамьи для брусков №1 и №2:

α 1 = (24 ± 1) град ;

α 2 = (27 ± 1) град .

Таблица 1

Координата

1-го датчика

x 1 , мм

x 1 +,

Координата

2-го датчика

x 2 , мм

x 2 +,

Координата

3-го датчика

x 3 , мм

x 3 +,


Упражнение 1 (брусок №1)

1. Собрать лабораторную установку, установив направляющую скамью под углом α 1 = 24 (контролируется с помощью транспортира) и поместив 3 оптических датчика на пути перемещения бруска вдоль направляющей скамьи.

2. Установить брусок №1 на наклонную направляющую и удерживать его в верхнем, начальном, положении.

Запустить измерения, нажав кнопку (Ctrl+S) (запустить измерения для выбранных датчиков) и сразу, непосредственно вслед за запуском, отпустить брусок, после чего он начнет скользить по наклонной плоскости из верхнего положения.

3. После прохождения бруском всей наклонной плоскости, остановить измерения, нажав кнопку (Ctrl+T) (остановить измерения). На экране будут видны три импульса, показывающие моменты перекрытия оптических осей 3-х датчиков при скольжении деревянного бруска по наклонной плоскости (рис. 3.6) (цифры условные).

Р

ис. 3.6

4. Провести обработку полученных данных в соответствии со сценарием:

t , с

x , м

    правую колонку таблицы, обозначенную «x , м », необходимо заполнить вручную. Если три датчика установлены на отметках 15 см , 40 см и 65 см соответственно (данные берутся из таблицы 1), то, после введения всех шести значений координат датчиков, таблица на экране будет выглядеть следующим образом:

t , с

x , м

цифра в центральной колонке таблицы (под обозначением «А») равна удвоенному коэффициенту при квадратичной степени в уравнении (3.13), т.е.
, поэтому в данном случае величина ускорения будет равна a 1 = 2A = 0,13×2 = 0,26 м /с 2 . Записать это значение в таблицу 2.

5. Повторить эксперимент по пп. 2-4 ещё четыре раза. Все результаты записать в таблицу 2.

6. Установить направляющую скамью под углом α 2 = 27, поместив три оптических датчика на пути перемещения бруска вдоль направляющей скамьи. Повторить весь эксперимент по пп. 2–4. Все результаты записать в таблицу 3.

Таблица 2, брусок №1 (α 1 = 24)

опыта

а 1 i ,

м /с 2

μ 1 i , ед .

μ 1 i , ед .

1

2

3

4

5

Таблица 3, брусок №1(α 2 = 27)

опыта

а 2 i ,

м /с 2

μ 2 i , ед .

μ 2 i , ед .

1

2

3

4

5

После таблиц оставить место для записи расчётных результатов (примерно половину страницы).

Упражнение 2 (брусок №2)

1. Взять брусок №2 с другим материалом опорной поверхности скольжения и повторить для него весь эксперимент по пп. 1–6. Все результаты записать в таблицы 4 и 5 соответственно.

Таблица 4, брусок №2 (α 1 = 24)

опыта

а 3 i ,

м /с 2

μ 3 i , ед .

μ 3 i , ед .

1

2

3

4

5

Таблица 5, брусок №2 (α 2 = 27)

опыта

а 4 i ,

м /с 2

μ 4 i , ед .

μ 4 i , ед .

1

2

3

4

5

После таблиц оставить место для расчетных результатов (примерно половину страницы).

6. Обработка результатов измерений

    Используя полученные результаты и расчётное соотношение (3.14), найти среднее значение коэффициента трения I>μ> для каждого бруска и условий проведения опыта (угла наклона плоскости):

Частные отклонения записать в таблицы 2–4. Найти погрешность измерений для каждого случая

Для бруска №1:

1 > =…; 2 > = …;

Для бруска №2:

3 > = …; 4 > = …

2. Оценить погрешность эксперимента (погрешность измерений + погрешность метода).

Погрешность измерений (средняя из модулей частных отклонений):


= ...

Δ µ 1 изм. = …;Δ µ 2 изм. = …;

Δ µ 3 изм. = …;Δ µ 4 изм. =

Погрешность метода:

/B> a 1 > = м/с 2 ;Δ a 1 = м/с 2

ε µ = Δ µ 1 мет. = ε µ · 1 > =

Δ µ 1 =

/B> a 2 > = м/с 2 ;Δ a 2 = м/с 2

ε µ = ... Δ µ 2 мет. = ε µ · 2 > =

Δ µ 2 =

/B> a 3 > = м/с 2 ;Δ a 3 = м/с 2

ε µ = ... Δ µ 3 мет. = ε µ · 3 > = ...

Δ µ 3 =

/B> a 4 > = м/с 2 ;Δ a 4 = м/с 2

ε µ = ... Δ µ 4 мет. = ε µ · 4 > =

Δ µ 4 = ...

    Записать результат экспериментального определения коэффициента трения μ для бруска №1 и для бруска №2 в стандартной форме:

7. Контрольные вопросы

    Что такое сила трения?

    Какие виды сил трения вы знаете?

    Что такое сила трения покоя? Чему равна сила трения покоя?

    Нарисуйте графики зависимости силы сухого трения от касательной к поверхности опоры составляющей результирующей остальных сил, действующих на тело.

    От чего зависит коэффициент трения скольжения?

    Как можно экспериментально определить коэффициент трения скольжения из условий равновесия тела на наклонной плоскости?

    Как в данной работе экспериментально определяется коэффициент трения скольжения?

    Что представляет собой лабораторный стенд?

    Расскажите о порядке выполнения работы и проведении измерений.

    Как оценить погрешность косвенного измерения коэффициента трения скольжения?

8. Указания по технике безопасности

    Перед выполнением работы получить инструктаж у лаборанта.

    Соблюдать общие правила техники безопасности работы в лаборатории ";Физика";.

9. Приложения

Приложение 1. Оценка погрешности измерений.коэффициентамиУрок

Числе с целью набора статистических данных): определение коэффициента трения скольжения тела по используемой поверхности (использовать... нами задачи ? – Ускорение тела должно быть равно нулю. – При каком значении коэффициента трения ...

  • Программа

    Прямолинейное движение» 1 3 Решение графических задач 1 4 Решение задач

  • Силой трения () называют силу, возникающую при относительном движении тел. Эмпирически установлено, что сила трения скольжения зависит от силы взаимного давления тел (реакции опоры) (N), материалов поверхностей трущихся тел, скоростей относительного движения.

    ОПРЕДЕЛЕНИЕ

    Физическая величина, которая характеризует трущиеся поверхности, называется коэффициентом трения . Чаще всего коэффициент трения обозначают буквами k или .

    В общем случае коэффициент трения зависит от скорости движения тел относительно друг друга. Надо отметить, что зависимость обычно не принимается во внимание и коэффициент трения скольжения считают постоянным. В большинстве случаев силу трения

    Коэффициент трения скольжения величина безразмерная. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

    Коэффициент трения, который соответствует максимальной силе трения покоя в большинстве случаев больше, чем коэффициент трения скольжения.

    Для большего числа пар материалов величина коэффициента трения не больше единицы и лежит в пределах

    На значение коэффициента трения любой пары тел, между которыми рассматривается сила трения, оказывает влияние давление, степень загрязненности, площади поверхности тел и другое, что обычно не учитывается. Поэтому те значения коэффициентов сил трения, которые указаны в справочных таблицах, полностью совпадают с действительностью лишь при условиях, в которых они были получены. Следовательно, значения коэффициентов сил трения нельзя считать неизменной для одной и той де пары трущихся тел. Так, различают коэффициенты терния для сухих поверхностей и поверхностей со смазкой. Например, коэффициент терния скольжения для тела из бронзы и тела из чугуна, если поверхности материалов сухие равен Для этой же пары материалов коэффициент терния скольжения при наличии смазки

    Примеры решения задач

    ПРИМЕР 1

    Задание Тонкая металлическая цепь лежит на горизонтальном столе (рис.1). Ее длина равна , масса . Конец цепи свешивается с края стола. Если длина свешивающейся части цепи составит часть от длины всей цепи, она начинает скользить вниз со стола. Каков коэффициент трения цепи о стол, если цепь считать однородной по длине?

    Решение Цепь движется под действием силы тяжести. Пусть сила тяжести, действующая на единицу длины цепи равна . В таком случае в момент начала скольжения сила тяжести, которая действует на свешивающуюся часть, будет:

    До начала скольжения эта сила уравновешивается силой трения, которая действует на часть цепи, которая лежит на столе:

    Так как силы уравновешиваются, то можно записать ():

    Ответ

    ПРИМЕР 2

    Задание Каков коэффициент трения тела о наклонную плоскость, если угол наклона плоскости равен а ее длина равна . Тело по плоскости двигалось с постоянным ускорением в течение времени t.
    Решение В соответствии со вторым законом Ньютона равнодействующая сил приложенных к движущемуся с ускорением телу равна:

    В проекциях на оси X и Y уравнения (2.1), получим:

    2.2.4. Сила трения

    Сила трения действует не только на движущееся тело, но и на тело, находящееся в покое, если существуют силы, которые стремятся этот покой нарушить. На тело, которое катится по опоре, также действует сила трения.

    Сила трения покоя численно равна составляющей силы, направленной вдоль поверхности, на которой находится данное тело, и стремящейся сдвинуть его с места (рис. 2.7):

    F тр.пок = F x .

    Рис. 2.7

    При достижении указанной составляющей некоторого критического значения (F x = F крит) тело начинает двигаться. Критическое значение силы, которое соответствует началу движения, определяется формулой

    F x = F крит = µ пок N ,

    где µ пок - коэффициент трения покоя; N - модуль силы нормальной реакции опоры (эта сила численно равна весу тела).

    В момент начала движения сила трения покоя достигает максимального значения:

    F тр. пок max = μ пок N .

    Сила трения скольжения постоянна и определяется произведением:

    F тр.ск = µ ск N ,

    где µ ск - коэффициент трения скольжения; N - модуль силы нормальной реакции опоры.

    При решении задач считают, что коэффициенты трения покоя µ пок и скольжения µ ск равны между собой:

    µ пок = µ ск = µ.

    На рис. 2.8 изображен график зависимости величины силы трения F тр от проекции силы F x , стремящейся сдвинуть тело, на ось, направленную вдоль поверхности предполагаемого движения.

    Рис. 2.8

    Для того чтобы определить, будет ли данное тело находиться в покое или начнет двигаться под действием приложенной силы определенной величины и направления, необходимо:

    F крит = µN ,

    где µ - коэффициент трения; N - модуль силы нормальной реакции опоры;

    3) сравнить значения F крит и F x :

    • если F x > F крит, то тело движется под действием приложенной силы; в этом случае сила трения скольжения рассчитывается как

    F тр.ск = µN ;

    • если F x < F крит, то тело покоится под действием приложенной силы; в этом случае сила трения покоя рассчитывается как

    F тр.пок = F x .

    Модуль силы трения качения F тр.кач пропорционален коэффициенту трения качения µ кач, модулю силы нормальной реакции опоры N и обратно пропорционален радиусу R катящегося тела:

    F тр. кач = μ кач N R .

    Пример 13. К телу массой 6,0 кг, лежащему на горизонтальной поверхности, приложена сила 25 Н, направленная вдоль поверхности. Найти силу трения, если коэффициент трения равен 0,5.

    Решение. Произведем оценку величины силы, способной вызвать движение тела, по формуле

    F кр = µN ,

    где µ - коэффициент трения; N - модуль силы нормальной реакции опоры, численно равной весу тела (P = mg ).

    Величина критической силы, достаточной для начала движения тела, составляет

    F кр = μ m g = 0,5 ⋅ 6,0 ⋅ 10 = 30 Н.

    Проекция силы, приложенной к телу в горизонтальном направлении, на ось предполагаемого движения Ox (см. рисунок) равна

    F x = F = 25 Н.

    F x < F кр,

    т.е. величина приложенной к телу силы меньше величины силы, способной вызвать его движение. Следовательно, тело находится в состоянии покоя.

    Искомая сила трения - сила трения покоя - равна внешней горизонтальной силе, стремящейся этот покой нарушить:

    F тр.пок = F x = 25 Н.

    Пример 14. Тело находится на наклонной плоскости с углом при основании 30°. Вычислить силу трения, если коэффициент трения равен 0,5 3 . Масса тела равна 3,0 кг.

    Решение. На рисунке стрелкой показано направление предполагаемого движения.

    Выясним, останется ли тело в покое или начнет двигаться. Для этого рассчитаем величину критической силы, способной вызвать движение, т.е.

    F кр = µN ,

    где µ - коэффициент трения; N = mg  cos α - величина силы нормальной реакции наклонной плоскости.

    Расчет дает значение указанной силы:

    F кр = μ m g cos 30 ° = 0,5 3 ⋅ 3,0 ⋅ 10 ⋅ 3 2 = 22,5 Н.

    Из состояния покоя тело стремится вывести проекция силы тяжести на ось Ox , величина которой составляет

    F x = mg  sin 30° = 15 Н.

    Таким образом, имеет место неравенство

    F x < F кр,

    т.е. проекция силы, стремящейся вызвать движение тела, меньше величины силы, способной это сделать. Следовательно, тело сохраняет состояние покоя.

    Искомая сила - сила трения покоя - равна

    F тр = F x = 15 Н.

    Пример 15. Шайба находится на внутренней поверхности полусферы на высоте 10 см от нижней точки. Радиус полусферы составляет 50 см. Вычислить коэффициент трения шайбы о сферу, если известно, что указанная высота является максимально возможной.

    Решение. Проиллюстрируем условие задачи рисунком.

    Шайба, согласно условию задачи, находится на максимально возможной высоте. Следовательно, сила трения покоя, действующая на шайбу, имеет максимальное значение, совпадающее с проекцией силы тяжести на ось Ox :

    F тр. пок max = F x ,

    где F x = mg  cos α - модуль проекции силы тяжести на ось Ox ; m - масса шайбы; g - модуль ускорения свободного падения; α - угол, показанный на рисунке.

    Максимальная сила трения покоя совпадает с силой трения скольжения:

    F тр. пок max = F тр. ск,

    где F тр.ск = µN - модуль силы трения скольжения; N = mg  sin α - величина силы нормальной реакции поверхности полусферы; µ - коэффициент трения.

    Коэффициент трения определим, записав указанное равенство в явном виде:

    mg  cos α = µmg  sin α.

    Отсюда следует, что искомый коэффициент трения определяется тангенсом угла α:

    Указанный угол определим из дополнительного построения:

    tg α = R − h 2 h R − h 2 ,

    где h - предельная высота, на которой может находиться шайба; R - радиус полусферы.

    Расчет дает значение тангенса:

    tg α = 0,5 − 0,1 2 ⋅ 0,1 ⋅ 0,5 − (0,1) 2 = 4 3

    и позволяет вычислить искомый коэффициент трения.

    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png