Левитрон - это игрушка, демонстрирующая левитацию крутящегося волчка, в котором расположен неодимовый магнит над ферритовым магнитом большего деаметра. Выглядит это удивительно!
Материалы для изготовления Левитрона
Итак, нам понадобится для изготовления игрушки три магнита в форме колец, обладающие достаточной мощностью. Вполне подойдут для нашей цели магниты из низкочастотных динамиков, срок службы которых давно истек.

Для того чтобы сделать волчок, будет нужен неодимный магнит. Взять его можно из динамика, на котором имеется надпись«Neodium transducer». Применяются подобные динамики в сотовых. Самый сильный постоянный магнит сегодня – это неодимный, созданный из сплава, в который входят неодим, бор и железо. Высокая температура негативно повлияет на него, поэтому этот магнит следует беречь от нагревания. Итак, магнит из сотового телефона может оказаться двух видов – в виде круглой пластинки или же в виде кольца. Кольцевой магнит одевается на сам волчок строго по центру, а магнит в форме таблетки приклеивается на ось волчка снизу. Материалом для самого волчка должен служить легкий материал, такой как композит или пластмасса.

Настройка левитрона
К настройке следует подойти с особой скрупулезностью, ведь эта часть работы имеет решающее значение и является наиболее трудоемкой. Кольцевые магниты должны быть соединены между собой разнополярными сторонами. Сверху на них следует установить пластину (не из металла) толщиной до 1 см. Волчок аккуратно будет установлен в основание левитрона – центр магнита. Если Вы заметили, что волчок отклоняется в сторону, значит, магнит нужно заменить на другой, с большим диаметром.

Чтобы запустить волчок, понадобятся еще несколько элементов, с помощью которых можно будет регулировать толщину платформы, чтобы достичь нормального вращения волчка. Нам понадобится пластика из оргстекла с бумажными листами. Если волчок крутится нормально, начинаем плавно приподнимать платформу, пока он не взлетит вверх.

Если наш волчок подлетает с излишней стремительностью, следует увеличить его вес. Если же он отклоняется в одну сторону, то исправить ситуацию можно, подложив бумажные листы под противоположную. Эти действия позволяют настроить основу нашей игрушки, так чтобы она находилась четко на уровне моря.

И видео с левитронами…

В некоторых продвинутых магазинах можно увидеть стенды с рекламой, на которых показываются интереснейшие эффекты, когда какая-то вещь с витрины или предмет с изображением бренда левитирует. Иногда добавляется вращение. Но такую установку вполне по силам сделать даже человеку без особого опыта в самоделках. Для этого нужен неодимовый магнит, который можно найти в запчастях от компьютерной техники.

Свойства магнита удивительны. Одно из таких свойств отталкиваться одинаковыми полюсами используется в предметах, которые используются как поезда на магнитной подушке, забавные игрушки или основа для эффектных дизайн-объектов и др. Как сделать левитирующий объект на основе магнитов?

Магнитная левитация на видео

Левитация волчка над пятью точечными неодимовыми магнитами. Magnetic Levitation, magnétismo, magnetic experiment, truco magnética, moto perpetuo, amazing game. Занимательная физика.

Обсуждение

hawk
При вращении магнита присутствует левитация а если обороты магнита уменьшаются падает с орбиты… обоснуй этот эффект. Взаимодействие магнитных полей между магнитами это ясно но какая роль вращения. Можно переменным магнитным полем от катушек удерживать магнит в воздухе также.

pukla777
Просьба проработать тему – маховик генератор. Думаю она будет иметь полезное практичное применение. К тому же, оно у вас было очень давно снято в ролике, но очень мало и без информации.

RussiaPrezident
А что если:
Запустить этот волчок и каком нибудь кубе и создать там Вакуум, по идеи не будет сопротивления воздуха и он будет крутиться практически бесконечно! А если не него ещё и медь правильно накрутить и снимать энергию?

Евгений Петров
Читаю комментарии, удивлен, какая нитка!? Там все как есть магнитный волчок, ему задали мех. энергию и есть постоянное магнитное поле волчка при вращении которого вращается и магнитное поле, но главное как! В магнитах домены упакованы не равно распределено это технически не возможно поэтому сам магнит пассивный не может удержаться на магнитной подушке он уйдет на более сильную сторону где разница вообще мизерная, поэтому вращение поля не дает это сделать.

Вячеслав Субботин
Ещё идея, а что если светить лазером постоянно с одной стороны? Изменится ли время вращения волчка из-за давления света? Если взять сильный лазер, то может быть получится сделать, чтобы волчок вообще не останавливался.

Никто Неизвестный
Старая игрушка… я помню данный волчок и пластину под ним на ферритовых магнитах, на неодиме это уже скучно, причем нижний магнит основания представлял собой одну сплошную плиту, а не пять отдельных магнитов, только он был намагничен хитрым образом…

Алигарх Леопольд
Игорь Белецкий, можно сделать колпак на который будет приземляться волчёк, чтоб его не ловить. Можно ли к нему добавить вращающееся магнитное поле чтоб поддерживать вращение? к примеру если его магнитный стол вращать..

Тимур Аминев
А расскажите пожалуйста как магнитное поле Земли тормозит волчок? В смысле какие моменты сил направленные против вращения возникают и почему.

Александр Васильевич
Если сверху над магнитом (или снизу было бы вообще шикарно!) приделать катушку и подкручивать ею волчок, то получится некое подобие двигателя на магнитном подвесе. Вещь абсолютно бестолковая, но красивая. Крутиться будет пока источник питания не убрать))

Иван Петров
Ну это мы уже видели. Сделай так чтобы магнит левитировал без вращения! (и без опор и жидкого азота конечно).

Высокий эльф
Развод для двоечников, это можно было назвать левитацией, если магнит не надо было раскручивать. Сам магнит, что сверху, будет соскальзывать если ему не придать вращение.

Андрей Соломенников
А что если приделать на платформу огонь, а к гироскопу (Юле) пропеллеры, что бы вращалась пока горит огонь внизу. Не помню как называется двигатель, но суть его – вращение, так сказать, ротора при помощи тепла.

волжанин
Игорь,есть такая идея… У тебя на столе не равномерное магнитное поле,а если и волчок сделать из нескольких магнитиков, а стол раскрутить…Может и волчок не будет обороты терять… Как думаешь?..

Антон Симовских
Игорь Белецкий, разобрались в физике процесса? Почему левитация возможна лишь в динамике? Влияют ли на стабилизацию волчка токи фуко, в нем возникающие?

Простейшая установка с левитирующим объектом на магните


Для этого понадобятся: бокс от СД-дисков, один или два диска, много кольцевых магнитов и супер-клей. Приобрести любой магнит можно в китайском интернет-магазине.

Когда к вам придут ваши друзья в гости, они удивятся эффектной конструкции, которую вы создали сами.

Комнатные растения – это простой и недорогой способ украсить любое помещение, сделать его более уютным и красивым. Но даже самое простое растение сможет приковывать к себе удивленные взгляды всех, если оно будет посажено в левитирующий горшок. В отличие от простых моделей, он не просто парит в воздухе, а еще и вращается в разные стороны. Об особенностях таких летающих горшков, а также принципе их работы и пойдет речь в статье.

О производителе

Сегодня такие комнатные парящие цветы предлагают сразу две компании.

  • Отечественный бренд Levitera. Он предлагает покупателям не только несколько различных растений на выбор, но и даже пустые цветочные горшки, которые покупатели могут заполнить самостоятельно по своему желанию.
  • Шведская компания Flyte. Она также предлагает покупателям различные сорта комнатных растений в левитирующих горшках. Помимо этого, в ассортименте производителя имеются и парящие часы.

Оба производителя выпускают качественную и уникальную продукцию. Разница между их товарами заключается в цене, а также в комплектации, точнее – в разъеме самой вилки-розетки.

Характеристики

Парящие в воздухе горшки с цветами появились относительно недавно, на российском рынке они считаются новинкой. Основными их особенностями являются:

  • уникальный внешний вид;
  • возможность высаживания в горшок абсолютно любого растения;
  • компактный размер;
  • возможность использовать емкость не только как горшок, но и как кашпо;

  • долговечность;
  • неприхотливость и безопасность в эксплуатации.

Комплектация и подключение

Работает такой левитирующий цветочный горшок благодаря подключению к электрической сети. Без ее наличия насладиться уникальным внешним видом устройства будет невозможно.

Такой горшок является магнитным, то есть в воздухе его удерживают именно магниты, которые представлены в виде сложных схем. Находятся они как на дне самой емкости, так и на поверхности удерживающей подставки. Магниты активируются при включении устройства в розетку.

Производитель предлагает следующую комплектацию:

  • подставка;
  • удлинитель;
  • розетка;
  • сам горшок;
  • саженец растения;
  • инструкция по эксплуатации.

Для того чтобы запустить парящий горшок, необходимо освободить подставку от упаковки и поместить ее на ровную поверхность. Затем следует включить шнур в розетку питания. После этого необходимо взять горшок двумя руками и, не касаясь платформы, расположить его в центре нее на высоте не более 1 см. Если все будет сделано правильно, при ослаблении рук горшок будет сам удерживаться в воздухе. Как правило, запустить его удается со 2-3 раза.

Такой парящий вазон для комнатных растений не просто зависает в воздухе и остается неподвижным. Если его слегка наклонить пальцами в любую сторону или же раскрутить, то он и дальше будет повторять заданное движение до тех пор, пока не будет остановлен.

При соблюдении всех требования к эксплуатации и бережном отношении срок исправной работы такого уникального устройства фактически неограничен. Производитель дает гарантию не менее 1 года беспрерывной работы.

Разновидности моделей

Производители сегодня выпускают такие парящие устройства только небольших размеров. Как правило, их диаметр не превышает 10 см. Это объясняется сложностью внутренней конструкции устройства.

Цветовая гамма довольно узкая. В ней представлены лишь 3 цвета: белый, темно-коричневый и светло-бежевый. Опять же, по словам производителей, функции и принцип работы такого горшка являются его главным украшением, поэтому он не нуждается в дополнительном декоре.

В ассортименте есть как просто круглые, так и многогранные модели с небольшим рисунком на поверхности. Однако в целом внешний вид таких приспособлений минимально декорирован. Все специально сделано для того, чтобы именно принцип работы устройства был главной изюминкой.

Для каких растений подходит?

В принципе магнитное кашпо подходит для любых комнатных цветов. Но сами разработчики рекомендуют использовать такое приспособление для небольших деревьев или средних по размеру растений. По их словам, лучшим выбором станет канадская ель, бонсай, кактус или суккуленты.

Устанавливать такие левитирующие горшки можно где угодно – в офисах, в квартирах, на даче. В любом случае такое устройство станет главной изюминкой любого цветника или комнаты.

Об особенностях и принципах действия левитирующего горшка смотрите в следующем видео.

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием "Air Bonsai", действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, "плавающую" над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита - пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: "Пропорционально-интегрально-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования."

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Для примера : в автомобиле у нас три значения (Вход, Установка, выход) будут - скорость, желаемая скорость и угол педали газа, соответственно.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение - это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал - скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino . Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.


Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого - увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля. Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino. Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

Распиновка модулей:

  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a - это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: "Неодим - химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения."

Неодим - это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом. Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах. Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный - это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Внимание ! Вам нужно быть осторожным при использовании неодимовых магнитов, так как их сильный магнетизм может навредить вам, или они могут сломать данные вашего жесткого диска или других электронных устройств, на которые влияют магнитные поля.

Совет ! Вы можете отделить два магнита, потянув их в горизонтальное положение, вы не сможете отделить их в противоположном направлении, потому что их магнитное поле слишком сильное. Они также очень хрупкие и легко ломаются.

Шаг 7: Готовим основание

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Если у вас есть 3D-принтер - здорово. У вас есть возможность сделать все с помощью него. Если принтера нет - не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше - файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные - для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой - к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг - собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Back Shed

Этот одновременно забавный и поучительный проект демонстрирует магнитную левитацию.

Магнитная левитация

Однажды я увидел устройство, в котором магнит парил в воздухе и, задавшись вопросом, как это сделано, решил проверить некоторые теории. После многих проб и ошибок мне удалось получить то, что вы можете видеть на Рисунке 1.

Основные элементы устройства - катушка, создающая магнитное поле, и установленный на ее торцевой поверхности линейный датчик Холла, необходимый для обнаружения поля постоянного магнита. Под контролем этого датчика при приближении постоянного магнита ток катушки выключается, магнит начинает падать, удаляясь от катушки, и катушка включается опять, эффективно удерживая магнит «подвешенным» в воздухе.

Эмалированным медным проводом сечением 0.45 мм я намотал небольшую катушку (Рисунок 2). Ее размеры и количество витков не столь важны, как электрическое сопротивление, которое должно быть достаточно большим, чтобы ограничить ток, забираемый от источника питания. Я стремился не выйти за пределы 0.5 А при напряжении питания 5 В, для чего сопротивление должно было находиться в диапазоне от 10 до 15 Ом (5 В/0.5 А = 10 Ом).

Однако, поскольку схема теперь доработана таким образом, чтобы в отсутствие магнита ток катушки выключался, ее сопротивление можно снизить, но до значения не менее 5 Ом.

Поскольку собственной мощности катушки недостаточно, ее требуется дополнить металлической пластиной. Я вырезал стальной диск толщиной 5 мм с диаметром, равным внешнему диаметру катушки, хотя диаметр может быть и немного меньше (Рисунок 3).

Магнит левитирует в узком интервале расстояний, в котором сам не способен примагнититься к пластине, и нуждается в небольшой помощи поля катушки, поддерживающей его в «подвешенном» состоянии.

К металлическому диску крепится датчик Холла, плоская сторона которого должна быть обращена в сторону катушки (Рисунки 4, 5).

Для удобства я установил датчик в пластиковый диск (Рисунок 6), который вырезал из акрилового листа, но можно обойтись и просто клеем или двухсторонним скотчем.

Очень важно установить датчик по центру катушки и ее металлического сердечника.

Первоначально я пытался считывать сигнал датчика Холла и управлять катушкой через транзистор с помощью системы PICAXE, выпускаемой фирмой Revolution Education на основе микроконтроллера PIC, но PICAXE оказалась слишком медленной. Тогда я решил воспользоваться операционным усилителем (ОУ) LM358, и это дало желаемый результат.

Конструкция получилась очень простой. Я обнаружил, что когда магнит левитирует, схема, в зависимости от веса объекта, потребляет всего 50…150 мА. Но если магнит убрать, управляющий транзистор полностью открывается, средний ток увеличивается, и стабилизатор 5 В начинает перегреваться.

Поэтому схема была переработана (Рисунок 7). Чтобы отключать катушку при отсутствии магнита, я использовал второй операционный усилитель микросхемы LM358.

Вся схема, включая катушку, питается напряжением 5 В, стабилизированным микросхемой LM7805, максимальный ток которой не должен превышать 0.5 А.

В отсутствие внешнего поля выходное напряжение линейного датчика Холла равно примерно половине напряжения питания 5 В. Если к датчику поднести магнит, выходное напряжение увеличивается или уменьшается, в зависимости от того, каким полюсом магнит направлен к датчику (северным или южным). В этой схеме при приближении магнита напряжение должно повышаться, поэтому подносить магнит к датчику нужно южным полюсом.

Выход датчика подключен к инвертирующему входу первого операционного усилителя (ОУ1), на неинвертирующий вход которого подается напряжение с делителя напряжения R1/R2. Подстроечный резистор R2 используется для уравновешивания в точке левитации разных по размерам и весу магнитов и объектов.

Выход ОУ1 через резистор 1 кОм соединен с базой транзистора BD681, управляющего включением катушки. Здесь подойдет практически любой NPN транзистор или MOSFET с допустимым током не менее 1 А.

Второй операционный усилитель микросхемы (ОУ2) используется для слежения за частотой переключения транзистора Q1. Для этого выходное напряжение ОУ1, эффективно сглаженное RC-фильтром R9/С4 (100 кОм/1 мкФ), подается на неинвертирующий вход ОУ2.

На инвертирующий вход ОУ2 поступает напряжение с делителя R7/R8, в одно плечо которого включен подстроечный резистор. Пока ток катушки, управляемый выходом ОУ1, пульсирует, стремясь удерживать магнит в подвешенном состоянии, аналоговое напряжение на неинвертирующем входе ОУ2 ниже установленного делителем на инвертирующем входе. Но если убрать магнит, напряжение на этом входе увеличится, поскольку ОУ1 будет пытаться вернуть магнит на место, непрерывно открывая транзистор управления током катушки, колебания прекратятся, и выходное напряжение ОУ1 станет постоянно высоким. В результате напряжение на неинвертирующем входе ОУ2 превысит напряжение на инвертирующем, и уровень выходного сигнала переключится на высокий. К выходу ОУ2 через резистор 5.1 кОм подключена база NPN транзистора , коллектор которого соединен с базой транзистора , управляющего током катушки. Шунтируя базовый резистор 1 кОм (R3) на землю, Q2 отключает катушку.

Второй транзистор BC337 (Q3), также подключенный к выходу ОУ2, управляет светодиодами, закорачивая на землю токоограничительный резистор R12, когда их надо погасить.

Установка точки отключения катушки легко выполняется вращением движка подстроечного резистора R8 до положения, в котором светодиоды погаснут. Если внести магнит в зону чувствительности датчика, светодиоды зажгутся вновь, ток катушки начнет пульсировать, и далее лишь останется с помощью подстроечного резистора R2 найти точку равновесия магнита.

Теперь, после того, как все ошибки схемы были устранены, имея несколько простых компонентов, ее очень легко повторить.

Конструкция печатной платы представлена на Рисунках 8 и 9. Площадки, помеченные «TP», служили тестовыми точками, в которые в процессе отладки я запаивал штырьки для подключения приборов. При повторении схемы их можно не устанавливать.

Выводы катушки должны быть подключены так, чтобы создавать магнитное поле нужного направления. Проверить правильность их присоединения очень просто: если схема не работает, поменяйте местами провода.

Размеры магнита не слишком важны, но он должен быть достаточно сильным. Хорошо подойдет редкоземельный магнит, например, неодимовый.

Во избежание перегрева стабилизатора напряжения, обязательно установите его на радиатор. Выберите источник питания с напряжением 7 … 12 В, поскольку чем выше входное напряжение, тем больше нагревается стабилизатор напряжения 5 В.

Максимально допустимое входное напряжение датчика Холла равно 6 В, поэтому для питания схемы выбрано напряжение 5 В.

Если ваш магнит сильно вибрирует, или вообще не хочет левитировать, это может быть вызвано несколькими причинами, главной из которых является недостаточная толщина металлической пластины на катушке. Попробуйте добавить к ней еще несколько шайб. Возможно также, что датчик Холла смещен относительно центра катушки, или же зазор, установленный между катушкой и магнитом, слишком мал, и магнит нужно немного опустить регулировкой подстроечного резистора R2. (Это очень тонкая настройка). А может быть, катушка перекошена и установлена не вертикально.

Добавление мигающих RGB светодиодов сверху и снизу магнита создаст приятный эффект, если вы заставите левитировать какой-либо блестящий объект, такой, например, как шарик из алюминиевой фольги (Рисунки 10 и 11). Поскольку верхний светодиод находится ближе к объекту, желательно расширить угол его излучения, спилив линзу напильником.

Совсем другой эффект можно получить, изготовив небольшой пропеллер с прикрепленным в его центре магнитом. Я вырезал его из банки от Кока-Колы. Затем поместите под пропеллером плоскую свечку-таблетку или ароматическую масляную горелку, и поднимающийся поток теплого воздуха заставит левитирующий пропеллер вращаться. Для вращения пропеллера требуется совсем небольшая разница температур, и если воздух в помещении холодный, будет вполне достаточно тепла, выделяемого катушкой. Конечно же, если воздух теплый, это работать не будет.

В устройстве можно использовать катушку от ненужного соленоида, но предварительно необходимо убедиться в том, что потребляемый ею ток не перегрузит схему, поскольку многие соленоиды очень прожорливы.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png