В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

Почему выпущенный из рук камень падает на Землю? Потому что его притягивает Земля, скажет каждый из вас. В самом деле, камень падает на Землю с ускорением свободного падения. Следовательно, на камень со сто-роны Земли действует сила, направленная к Земле. Согласно третьему закону Ньютона и камень действует на Землю с такой же по модулю силой, направленной к камню. Иными словами, между Землей и камнем действуют силы взаимного притяжения.

Ньютон был первым, кто сначала догадался, а потом и строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила тяготения, действующая между любыми телами Вселенной. Вот ход его рассуждений, приведенных в главном труде Ньютона «Математические начала натуральной философии»:

«Брошенный горизонтально камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадет наконец на Землю. Если его бросить с большей скоростью, то он упадет дальше» (рис. 1).

Продолжая эти рассуждения, Ньютон приходит к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы с определенной скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался вокруг нее «подобно тому, как планеты описывают в небесном пространстве свои орбиты».

Сейчас нам стало настолько привычным движение спутников вокруг Земли, что разъяснять мысль Ньютона подробнее нет необходимости.

Итак, по мнению Ньютона, движение Луны вокруг Земли или планет вокруг Солнца – это тоже свободное падение, но только падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого «падения» (идет ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) является сила всемирного тяготения. От чего же эта сила зависит?

Зависимость силы тяготения от массы тел

Галилей доказал, что при свободном падении Земля сообщает всем телам в данном месте одно и то же ускорение независимо от их массы. Но ускорение по второму закону Ньютона обратно пропорционально массе\. Как же объяснить, что ускорение, сообщаемое телу силой притяжения Земли, одинаково для всех тел? Это возможно лишь в том случае, если сила притяжения к Земле прямо пропорциональна массе тела. В этом случае увеличение массы т, например, вдвое приведет к увеличению модуля силы F тоже вдвое, а ускорение, которое равно \(a = \frac {F}{m}\), останется неизменным. Обобщая этот вывод для сил тяготения между любыми телами, заключаем, что сила всемирного тяготения прямо пропорциональна массе тела, на которое эта сила действует.

Но во взаимном притяжении участвуют по меньшей мере два тела. На каждое из них, согласно третьему закону Ньютона, действуют одинаковые по модулю силы тяготения. Поэтому каждая из этих сил должна быть пропорциональна как массе одного тела, так и массе другого тела. Поэтому сила всемирного тяготения между двумя телами прямо пропорциональна произведению их масс:

\(F \sim m_1 \cdot m_2\)

Зависимость силы тяготения от расстояния между телами

Из опыта хорошо известно, что ускорение свободного падения равно 9,8 м/с 2 и оно одинаково для тел, падающих с высоты 1, 10 и 100 м, т. е. не зависит от расстояния между телом и Землей. Это как будто бы означает, что и сила от расстояния не зависит. Но Ньютон считал, что отсчитывать расстояния надо не от поверхности, а от центра Земли. Но радиус Земли 6400 км. Понятно, что несколько десятков, сотен или даже тысяч метров над поверхностью Земли не могут заметно изменить значение ускорения свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их вза-имного притяжения, нужно было бы узнать, каково ускорение тел, удаленных от Земли на достаточно большие расстояния. Однако наблюдать и изучать свободное падение тела с высоты в тысячи километров над Землей трудно. Но сама природа пришла здесь на помощь и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли и обладающего поэтому центростремительным ускорением, вызванным, разумеется, той же силой притяжения к Земле. Таким телом является естественный спутник Земли – Луна. Если бы сила притяжения между Землей и Луной не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение тела, свободно падающего близ поверхности Земли. В действительности же центростремительное ускорение Луны равно 0,0027 м/с 2 .

Докажем это . Обращение Луны вокруг Земли происходит под действием силы тяготения между ними. Приближенно орбиту Луны можно считать окружностью. Следовательно, Земля сообщает Луне центростремительное ускорение. Оно вычисляется по формуле \(a = \frac {4 \pi^2 \cdot R}{T^2}\), где R – радиус лунной орбиты, равный примерно 60 радиусам Земли, Т ≈ 27 сут 7 ч 43 мин ≈ 2,4∙10 6 с – период обращения Луны вокруг Земли. Учитывая, что радиус Земли R з ≈ 6,4∙10 6 м, получим, что центростремительное ускорение Луны равно:

\(a = \frac {4 \pi^2 \cdot 60 \cdot 6,4 \cdot 10^6}{(2,4 \cdot 10^6)^2} \approx 0,0027\) м/с 2 .

Найденное значение ускорения меньше ускорения свободного падения тел у поверхности Земли (9,8 м/с 2) приблизительно в 3600 = 60 2 раз.

Таким образом, увеличение расстояния между телом и Землей в 60 раз привело к уменьшению ускорения, сообщаемого земным притяжением, а следовательно, и самой силы притяжения в 60 2 раз.

Отсюда вытекает важный вывод: ускорение, которое сообщает телам сила притяжения к Земле, убывает обратно пропорционально квадрату расстояния до центра Земли

\(F \sim \frac {1}{R^2}\).

Закон всемирного тяготения

В 1667 г. Ньютон окончательно сформулировал закон всемирного тяготения:

\(F = G \cdot \frac {m_1 \cdot m_2}{R^2}.\quad (1)\)

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности G называется гравитационной постоянной .

Закон всемирного тяготения справедлив только для таких тел, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. Иначе говоря, он справедлив только для материальных точек . При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 2). Подобного рода силы называются центральными.

Для нахождения силы тяготения, действующей на данное тело со сто-роны другого, в случае, когда размерами тел пренебречь нельзя, поступают следующим образом. Оба тела мысленно разделяют на столь малые элементы, чтобы каждый из них можно было считать точечным. Складывая силы тяготения, действующие на каждый элемент данного тела со стороны всех элементов другого тела, получают силу, действующую на этот элемент (рис. 3). Проделав такую операцию для каждого элемента данного тела и сложив полученные силы, находят полную силу тяготения, действующую на это тело. Задача эта сложная.

Есть, однако, один практически важный случай, когда формула (1) применима к протяженным телам. Можно доказать, что сферические тела, плотность которых зависит только от расстояний до их центров, при расстояниях между ними, больших суммы их радиусов, притягиваются с силами, модули которых определяются формулой (1). В этом случае R – это расстояние между центрами шаров.

И наконец, так как размеры падающих на Землю тел много меньше размеров Земли, то эти тела можно рассматривать как точечные. Тогда под R в формуле (1) следует понимать расстояние от данного тела до центра Земли.

Между всеми телами действуют силы взаимного притяжения, зависящие от самих тел (их масс) и от расстояния между ними.

Физический смысл гравитационной постоянной

Из формулы (1) находим

\(G = F \cdot \frac {R^2}{m_1 \cdot m_2}\).

Отсюда следует, что если расстояние между телами численно равно единице (R = 1 м) и массы взаимодействующих тел тоже равны единице (m 1 = m 2 = 1 кг), то гравитационная постоянная численно равна модулю силы F . Таким образом (физический смысл ),

гравитационная постоянная численно равна модулю силы тяготения, действующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами, равном 1 м .

В СИ гравитационная постоянная выражается в

.

Опыт Кавендиша

Значение гравитационной постоянной G может быть найдено только опытным путем. Для этого надо измерить модуль силы тяготения F , действующей на тело массой m 1 со стороны тела массой m 2 при известном расстоянии R между телами.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. английским физиком Г. Кавендишем с помощью прибора, называемого крутильными весами. Схематично крутильные весы показаны на рисунке 4.

Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой m 1 = 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Для этой проволоки предварительно определялись силы упругости, возникающие в ней при закручивании на различные углы. Два больших свинцовых шара (диаметром 20 см и массой m 2 = 49,5 кг) можно было близко подводить к маленьким шарам. Силы притяжения со стороны больших шаров заставляли маленькие шары перемещаться к ним, при этом натянутая проволока немного закручивалась. Степень закручивания была мерой силы, действующей между шарами. Угол закручивания проволоки (или поворота стержня с малыми шарами) оказался столь малым, что его пришлось измерять с помощью оптической трубы. Результат, полученный Кавендишем, только на 1% отличается от значения гравитационной постоянной, принятого сегодня:

G ≈ 6,67∙10 -11 (Н∙м 2)/кг 2

Таким образом, силы притяжения двух тел массой по 1 кг каждое, находящихся на расстоянии 1 м друг от друга, по модулям равны всего лишь 6,67∙10 -11 Н. Это очень малая сила. Только в том случае, когда взаимодействуют тела огромной массы (или по крайней мере масса одного из тел велика), сила тяготения становится большой. Например, Земля притягивает Луну с силой F ≈ 2∙10 20 Н.

Гравитационные силы – самые «слабые» из всех сил природы. Это связано с тем, что гравитационная постоянная мала. Но при больших массах космических тел силы всемирного тяготения становятся очень большими. Эти силы удерживают все планеты возле Солнца.

Значение закона всемирного тяготения

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.

Возмущения в движении планет . Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами. При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел – теорией возмущений.

Открытие Нептуна . Одним из ярких примеров триумфа закона все-мирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения – самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Просвещение, 1992. – 191 с.
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Закон всемирного тяготения открыл Ньютон в 1687 году при изучении движения спутника Луны вокруг Земли. Английский физик четко сформулировал постулат, характеризующий силы притяжения. Кроме того, анализируя законы Кеплера, Ньютон вычислил, что силы притяжения должны существовать не только на нашей планете, но и в космосе.

История вопроса

Закон всемирного тяготения родился не спонтанно. Издревле люди изучали небосвод, главным образом для составления сельскохозяйственных календарей, вычисления важных дат, религиозных праздников. Наблюдения указывали, что в центре «мира» находится Светило (Солнце), вокруг которого по орбитам вращаются небесные тела. Впоследствии догматы церкви не позволяли так считать, и люди утратили накапливавшиеся тысячелетиями знания.

В 16 веке, до изобретения телескопов, появилась плеяда астрономов, взглянувших на небосвод по-научному, отбросив запреты церкви. Т. Браге, многие годы наблюдая за космосом, с особой тщательностью систематизировал перемещения планет. Эти высокоточные данные помогли И. Кеплеру впоследствии открыть три своих закона.

К моменту открытия (1667 г.) Исааком Ньютоном закона тяготения в астрономии окончательно утвердилась гелиоцентрическая система мира Н. Коперника. Согласно ей, каждая из планет системы вращается вокруг Светила по орбитам, которые с приближением, достаточным для многих расчетов, можно считать круговыми. В начале XVII в. И. Кеплер, анализируя работы Т. Браге, установил кинематические законы, характеризующие движения планет. Открытие стало фундаментом для выяснения динамики движения планет, то есть сил, которые определяют именно такой вид их движения.

Описание взаимодействия

В отличие от короткопериодных слабых и сильных взаимодействий, гравитация и электромагнитные поля имеют свойства дальнего действия: их влияние проявляется на гигантских расстояниях. На механические явления в макромире воздействуют 2 силы: электромагнитная и гравитационная. Воздействие планет на спутники, полет брошенного или запущенного предмета, плавание тела в жидкости - в каждом из этих явлений действуют гравитационные силы. Эти объекты притягиваются планетой, тяготеют к ней, отсюда и название «закон всемирного тяготения».

Доказано, что между физическими телами безусловно действует сила взаимного притяжения. Такие явления, как падение объектов на Землю, вращение Луны, планет вокруг Солнца, происходящие под действием сил всемирного притяжения, называют гравитационными.

Закон всемирного тяготения: формула

Всемирное тяготение формулируется следующим образом: два любых материальных объекта друг к другу притягиваются с определенной силой. Величина этой силы прямо пропорциональна произведению масс этих объектов и обратно пропорциональна квадрату расстояния между ними:

В формуле m1 и m2 являются массами исследуемых материальных объектов; r - расстояние, определяемое между центрами масс расчетных объектов; G - постоянная гравитационная величина, выражающая силу, с которой осуществляется взаимное притяжение двух объектов массой по 1 кг каждый, располагающихся между собой на расстоянии 1 м.

От чего зависит сила притяжения

Закон всемирного тяготения по-разному действует, в зависимости от региона. Так как сила притяжения зависит от значений широты на определенной местности, то аналогично ускорение свободного падения обладает разными значениями в разных местах. Максимальное значение сила тяжести и, соответственно, ускорение свободного падения имеют на полюсах Земли - сила тяжести в этих точках равна силе притяжения. Минимальными значения будут на экваторе.

Земной шар слегка сплюснут, его полярный радиус меньше экваториального примерно на 21,5 км. Однако эта зависимость менее существенная по сравнению с суточным вращением Земли. Расчеты показывают, что из-за сплюснутости Земли на экваторе величина ускорения свободного падения чуть меньше его значения на полюсе на 0,18%, а через суточное вращение - на 0,34%.

Впрочем, в одном и том же месте Земли угол между векторами направления мал, поэтому расхождение между силой притяжения и силой тяжести незначительно, и ею в расчетах можно пренебречь. То есть можно считать, что модули этих сил одинаковы - ускорение свободного падения около поверхности Земли везде одинаковое и равно приблизительно 9,8 м/с².

Вывод

Исаак Ньютон был ученым, который совершил научную революцию, полностью перестроил принципы динамики и на их основе создал научную картину мира. Его открытие повлияло на развитие науки, на создание материальной и духовной культуры. На судьбу Ньютона выпала задача пересмотреть результаты представления о мире. В XVII в. ученым завершена грандиозная работа построения фундамента новой науки - физики.

Согласно законам Ньютона, движение тела с ускорением возможно только под действием силы. Т.к. падающие тела движутся с ускорением, направленным вниз, то на них действует сила притяжения к Земле. Но не только Земля обладает свойством действовать на все тела силой притяжения. Исаак Ньютон предположил, что между всеми телами действуют силы притяжения. Эти силы называются силами всемирного тяготения илигравитационными силами.

Распространив установленные закономерности – зависимость силы притяжения тел к Земле от расстояний между телами и от масс взаимодействующих тел, полученные в результате наблюдений,– Ньютон открыл в 1682 г. закон всемирного тяготения :Все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела. Коэффициент пропорциональности Gназываетсягравитационной постоянной (постоянной всемирного тяготения) и равна

.

Силой тяжести называется сила притяжения, действующая со стороны Земли на все тела:

.

Пусть
– масса Земли, а
– радиус Земли. Рассмотрим зависимость ускорения свободного падения от высоты подъема над поверхностью Земли:

Вес тела. Невесомость

Вес тела – сила, с которой тело давит на опору или подвес вследствие притяжения этого тела к земле. Вес тела приложен к опоре (подвесу). Величина веса тела зависит от того, как движется тело с опорой (подвесом).

Вес тела, т.е. сила, с которой тело действует на опору, и сила упругости, с которой опора действует на тело, в соответствие с третьим законом Ньютона равны по абсолютному значению и противоположны по направлению.

Если тело находится в покое на горизонтальной опоре или равномерно движется, на него действуют только сила тяжести и сила упругости со стороны опоры, следовательно вес тела равен силе тяжести (но эти силы приложены к разным телам):

.

При ускоренном движении вес тела не будет равен силе тяжести. Рассмотрим движение тела массой mпод действием сил тяжести и упругости с ускорением. По 2-му закону Ньютона:

Если ускорение тела направлено вниз, то вес тела меньше силы тяжести; если ускорение тела направлено вверх, то все тела больше силы тяжести.

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой .

Если тело свободно падает, то из формулы * следует, что вес тела равен нулю. Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью .

Состояние невесомости наблюдается в самолете или космическом корабле при движении их с ускорением свободного падения независимо от скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.

Движение тела под действием сил тяжести. Движение искусственных спутников. Первая космическая скорость

Если модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу всемирного тяготения во время движения постоянной, а движение тела равноускоренным. Самый простой случай движения тела под действием силы тяжести – свободное падение с нулевой начальной скоростью. В этом случае тело движется с ускорением свободного падения к центру Земли. Если есть начальная скорость, направленная не по вертикали, то тело движется по криволинейной траектории (параболе, если не учитывать сопротивление воздуха).

При некоторой начальной скорости тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии атмосферы может двигаться по окружности вокруг Земли, не падая на нее и не удаляясь от нее. Такая скорость называется первой космической скоростью , а тело, движущееся таким образом –искусственным спутником Земли (ИСЗ) .

Определим первую космическую скорость для Земли. Если тело под действием силы тяжести движется вокруг Земли равномерно по окружности, то ускорение свободного падения является его центростремительным ускорением:

.

Отсюда первая космическая скорость равна

.

Первая космическая скорость для любого небесного тела определяется таким же образом. Ускорение свободного падения на расстоянии R от центра небесного тела можно найти, воспользовавшись вторым законом Ньютона и законом всемирного тяготения:

.

Следовательно, первая космическая скорость на расстоянии R от центра небесного тела массойM равна

.

Для запуска на околоземную орбиту ИСЗ необходимо сначала вывести за пределы атмосферы. Поэтому космические корабли стартуют вертикально. На высоте 200 – 300 км от поверхности Земли, где атмосфера разрежена и почти не влияет на движение ИСЗ, ракета делает поворот и сообщает ИСЗ первую космическую скорость в направлении, перпендикулярном вертикали.

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия - это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? - задумался он. - Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g - ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg - mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png