История зарождения и развития науки начисляет много столетий. Еще вначале своего развития человечество улучшало условия жизни за счет познания и незначительного преобразования окружающего мира. Столетиями и тысячелетиями накопленный и, соответственно, обобщенный опыт передавался следующим поколениям. Механизм наследования накопленного опыта постепенно совершенствовался за счет установления определенных обычаев, традиций, письменности. Так исторически возникшая первая форма науки (наука античного мира), предметом изучения которой была вся природа в целом.

Первоначально созданная античная наука еще не делилась на отдельные сферы и маленькая черты натурфилософии. Природа рассматривалась целостно с преимуществом общего и недооценкой конкретного. Натурфилософии присущий метод наивной диалектики и стихийного материализма, если гениальные догадки переплетались с фантастическими россказнями об окружающем мире .

Рассмотренный период развития науки принадлежит к первой фазе процесса познания - непосредственного наблюдения . Наука античного мира еще не дошла в своем развитии до деления мира на отдельные более или менее отделенные области. Только в V ст. до н.э. из натурфилософской системы античной науки в самостоятельную область познания начинает выделяться математика. В середине ІV ст. до н.э. потребности отсчета времени, ориентации на Земле, объяснение сезонных явлений привели к созданию основ астрономии. В этот период отделяются основы химии, результаты исследований которых использовались при изъятии металлов из руд, крашении тканей и изделий из кожи.

Первые элементы науки появились в старинном мире в связи с потребностями общества и имели сугубо практический характер.

Для науки старинного мира (Вавилон, Египет, Индия, Китай) характерный стихийно-эмпирический процесс познания, при котором объединялись познавательные и практические аспекты. Знания имели практическую направленность и фактически выполняли роль методических разработок (правил) для конкретного вида деятельности.

В старинной Греции в науке зарождается научный уровень познания. Эллинистический период древнегреческой науки характеризуется созданием первых теоретических систем в области геометрии (Евклид), механики (Архимед), астрономии (Птоломей). Корифеи науки старинной Греции - Аристотель, Архимед и прочие в своих исследованиях для описания объективных закономерностей пользовались абстракциями, заложив основы доказательств представления об идеализированном материале, который есть важной чертой науки.

В эпоху Средневековья большой вклад в развитие науки внесли ученые арабского Востока и средней Азии: Ибн Сина, Ибн Рушд, Бируни и прочие.

В Европе в Средние века большое распространение приобретает специфическая форма науки - схоластика, который основное внимание предоставляла разработке христианской догматики, вместе из тем она внесла значительный вклад в развитие осмысления культуры, в усовершенствование искусства теоретических дискуссий.

В научно-философской системе Аристотеля наметилось деление науки на физику и метафизику. В дальнейшем постепенно внутри этой системы начинают выделяться как самостоятельные научные дисциплины логика и психология, зоология и ботаника, минералогия и география, эстетика, этика и политика. Таким образом, начался процесс дифференциации (распределения) науки и выделение самостоятельных по своим предметам и методам отдельных дисциплин.

Со второй половины XV ст. в эпоху Возрождения начинается период значительного развития природоведения как науки, начало которого (середина XV ст. - середина XVІ ст.) характеризуется накоплением значительного фактического материала о природе, полученного экспериментальными исследованиями. В это время проходит дальнейшая дифференциация науки; в университетах начинают преподавать основы фундаментальных научных дисциплин - математики, химии, физики.

Переход от натурфилософии к первому научному периоду в развитии природоведения проходил довольно долго - почти тысячу лет, что поясняется недостаточным прогрессом развития техники. Фундаментальные науки в то время не имели достаточного развития. Вплоть до начала XVІІ ст. математика представляла собой науку только о числах, скалярные величины, относительно простые геометрические фигуры и использовалась в основном в астрономии, земледелии, торговле. Алгебра, тригонометрия и основы математического синтеза только зарождались.

Второй период в развития природоведения , которое характеризуется как революционный в науке, приходится на середину XVІ ст. и до конца XІ ст. Именно в этот период были сделаны значительные открытия в физике, химии, механике, математике, биологии, астрономии, геологии. Эта эпоха дала плеяду выдающихся ученых, работы которых сильно повлияли на дальнейшее развитие науки.

Геоцентрическая система построения мира , созданная Птоломеем во ІІ с., заменяется гелиоцентрической, изобретенной М. Коперником, Г. Галилеем. К этому периоду належит создание аналитической геометрии Р. Декартом, логарифмов Дж. Непером, дифференциального и интегрального вычисления И. Ньютоном и Г. Лейбницем, как самостоятельные науки возникли химия, ботаника, физиология и геология.

В период конца XV ІІ ст. И. Ньютоном был открытый закон всемирного тяготения. По сути это была первая научная революция, связанная с именами Леонардо Да Винчи, Г. Галилея, Й. Кеплера, М.В. Ломоносова, П. Лапласа и других выдающихся ученых.

Следует отметить, что в этот период рядом с наблюдениями широко применяется эксперимент, который значительно расширил познавательную силу науки (Г. Галилей и Ф. Бекон является начинателями и основателями современной экспериментальной науки).

В XV-XVІІІ ст. наука начинает превращаться в реальную базу мировоззрения. Решающая роль в формировании научного мировоззрения належит механике, в рамках которой осуществляется познание не только физических и химических, а и биологических явлений.

Всередине XV ІІІ ст. ученые высказали идею о всеобщей взаимосвязи явлений и процессов, которые проходят в реальном мире . Эти идеи впервые высказал Р. Декарт, потом развили Ломоносов (закон кинематической теории материи, идея развития Земли), И. Кант, К. Вольф.

Промышленная революция конца XV ІІІ ст. - начала X І ст. - изобретение Д. Уаттом паровой машины, которая превращала тепловую энергию в механическую, стало могущественным стимулом дальнейшего развития науки. Физики открыли электрический ток и явление электромагнитной индукции (представителями науки были А. Вольт, В. Петров, Г. Деви, А. Ампер, М. Фарадей и др.), успешно разрабатывалась волновая теория света (Т. Юнг, О. Френель). К тому времени относится также формирование биологии как науки о законах жизни и развития живых организмов, сравнительной анатомии, морфологии, палеонтологии. Накопление фундаментальных результатов по вопросам исследования живой и безжизненной природы оказывало содействие созданию условий для больших открытий XІ столетия, которые, в свою очередь, стимулировали быстрое развитие всех естественных наук. Это закон сохранения и преобразование энергии, открытый Й.-Р. Майером, Г. Гельмгольцем, Дж. Джоулем, который является основным законом природоведения, который выражает единство всех физических форм движения материи; это клеточная теория, разработанная Т. Шванном и М. Шлейденом, которая доказала единство всех сложных организмов; это эволюционное учение Ч. Дарвина, который доказал единство видов растений и животных, их естественное происхождение и развитие.

Такой большой прыжок в развития науки оказывал содействие дальнейшему процессу ее дифференциации.

Большим научным достижением X І ст. является открытие Д. Менделеева периодического закона химических элементов, который и доказал наличие внутренней связи между веществами. Огромное значение имели открытие неевклидовой геометрии (М. Лобачевський) и законов электромагнитного поля (Дж. Максвел), электромагнитных волн и давления света. Эти открытия были принципиальными для природоведения и вызвали в нем глубокие сдвиги.

Революционные процессы в науке, которые прошли в XVІ-XІ столетиях, привели к коренному изменению взглядов на окружающий мир. Первый этап революции (середина XV ІІ - конец XV ІІІ ст.) разрешил обнаружить, что за видимостью явлений существует действительность, которую наука может изучать. Именно с этих пор природоведение практически становится наукой, опирается на понятие и объяснение этих наблюдений. Революционная идея развития и всеобщей связи природы характеризует второй этап революции в науке (конец XV ІІІ ст. - конец X І ст.).

В конце X І ст. - в начале XX ст. революция в природоведении вступила в новую, специфическую стадию , физика переступила порог микромира, был открыт электрон, заложены основы квантовой механики (М.Планк,1900г.). Было установлено, что законы микромира существенным образом отличаются от законов классической механики, а в природе вообще нет "последних" любых маленьких величин.

Электрон, так же неисчерпаем, как и атом, природа бесконечна.

В XX ст. развитие науки во всем мире характеризуется довольно высокими темпами. На основе достижений математики, физики, химии, биологии и других наук получили развитие молекулярная биология, генетика, химическая физика, кибернетика, биокибернетика, бионика и т.п..(синергетика)

В середине XX ст. началась научно-техническая революция, которая представляет собой коренное, качественное преобразование продуктивных сил. В этот период ведущую роль занимает наука о технике и производстве. На основе многих научных результатов внедрены технические решения.

Нынче наука развивается в трех направлениях: микромир - решение проблемы на уровне элементарных частей и атомных структур; мегамир - изучение Вселенной, начиная из солнечной системы к сферам внегалактического пространства; макромир - изучение функций высших структур живой материи.

В конце XX ст. - в начале XXІ ст. для науки присущи такие особенности:

- Дифференциация и интеграция науки . Это сложный диалектический процесс, характерный для всего процесса развития науки. Дифференциация науки является объективной, поскольку через каждых 5- 10 лет удваиваются научные дисциплины. Дифференциация знаний обусловленная практически неисчерпаемым объектом познания, потребностями практики и развития самой науки.

Также объективная интеграция науки, которая отображает взаимосвязь и взаимообусловленность научных знаний, усиленное проникновение одних наук в другие. Дифференциация и интеграция науки четко прослеживается на процессе перехода современной науки от предметной к проблемной ориентации при решении больших комплексных теоретических и практических вопросов. С одной стороны, проходит процесс дифференциации наук (выделение новых наук), а с другой - их интеграция, которая разрешает комплексно решать проблемы. Так, проблема охраны природы решается объединенными усилиями технических наук, биологии, наук о Земле, медицины, экономики, менеджменте, математике и других.

- Ускоренное развитие природоведческих наук. Природоведческие науки, изучая базовые структуры природы, закономерности их взаимодействия и управление, является фундаментом науки в целом и должны развиваться опережающими темпами. Только на основе опережающих фундаментальных исследований и изобретений в природоведении прикладные науки и техника смогут успешно решать проблемы, которые возникают в связи с развитием прогресса производства. В качестве примера может быть клонирование живых организмов высшего класса.

- Математизация наук. Математика является мозгом науки и душой техники. Математизация науки оказывает содействие использованию ПЕОМ, усилению связи между наукой, техникой и производством. Математика повышает требования к полезности поставленных задач, повышает уровень обобщений, эффективности объясняющих и прогнозируемых функций науки.

Современный период развития науки характеризуется групповым лидерством, комплексностью научных исследований, решением глобальных проблем. Глобальными проблемами являются: изучение Космоса, экономические проблемы, проблемы здоровья людей, продолжительность жизни и т.п., в решении которых должны принимать участие все науки без исключения: природно-математические, и гуманитарные, и технические.

- Усиление СВЯЗИ науки, техники и производства . На современном этапе наука является продуктивной силой общества, которае проявляется в глубоких изменениях в взаимосвязях науки и производства. Следует отметить, что новые виды производства и технологические процессы сначала зарождаются в недрах науки, научно-исследовательских институтах. Развитие атомной энергетики, получение сверхтвердых материалов, роботизация, создание искусственного интеллекта - все это иллюстрирует приведенное выше. Идет процесс уменьшения времени между научным открытием и внедрением его в производство. Раньше от открытия или изобретения проходили сотни и десятки лет. Так, открытие фотографии прошло этот путь более чем в сто лет, телефон и электромотор - приблизительно за 60 лет, радиолокатор - за 15, ядерный реактор - за 10, транзистор - за 5 лет. Нужно указать, что при этом проходит не только ускорение реализации полученных результатов, но каждый раз это ускорение приводит к новым качественным характеристикам, к обновлению параметров, вида и возможностей технических средств.

Важным является и то, что на производстве успешно развиваются научные исследования, увеличивается сеть научных учреждений, создаются научные технополисы. Наука является общественной по своему происхождению, развитию и использованию. Все научные открытия это всеобщая работа, на каждый момент времени наука выступает как суммарное выражение человеческого успеха в познании мира.

Основные современные тенденции развития науки состоят в переходе от их дифференциации к их интеграции, переход от координации наук к их субординации и от одноаспектности наук к рассмотрению их в комплексе. Именно эта тенденция проявилась в создании междисциплинарных областей знаний, которые цементируют собою фундаментальные науки; во взаимодействии между разными науками, которые изучают один и тот же объект и одновременно с разных сторон; в усилении этого взаимодействия вплоть до комплексного изучения объекта системой наук. Нынче эта тенденция характерна для объектов, которые имеют глобальный характер.

    Понятие, цели и функции науки

Наука - это сфера беспрерывного развития человеческой деятельности, основным признаком и главной функцией которой является открытие, изучение и теоретическая систематизация объективных законов об объективной действительности с целью их практического применения.

Наука имеет большое значение в развития человеческого общества. Она проникает как в материальные, так и в духовные сферы деятельности человека.

В литературе существует ряд толкований понятия "наука". Одни из них определяют науку как сумму знаний, достигнутых человечеством, другие - как вид человеческой деятельности, направленной на расширение познания человеком законов природы и развития общества. Но наиболее общим определением можно считать такое: наука - сфера человеческой деятельности, функции которой - разработка и теоретическая систематизация объективных знаний о действительности. Непосредственная цель науки - описание, объяснение и предусмотрение процессов, явлений действительности, которые являются предметом ее изучения, на основе открытия наукой законов.

Науку можно рассматривать в разных измерениях:

Как специфическую форму общественного сознания, основу которой составляет система знаний;

Как процесс познания закономерностей объективного мира;

Как определенный вид общественного разделения труда;

Как важный фактор общественного развития и как процесс производства новых знаний и их использование.

Понятие "наука" включает в себя как деятельность, направленную на получение новых знаний, так и результат этой деятельности - сумму добытых знаний, которые служат основой научного понимания мира. Термин "наука" применяется для названия отдельных областей научного знания.

Наука - это динамическое развитие системы знаний об объективных законах природы, общества и мышление, полученных и превращенных в непосредственную продуктивную силу общества в результате специальной деятельности людей.

Использование знаний в практической деятельности предусматривает наличие определенной группы правил, которые регламентируют как именно, в каких ситуациях, с помощью каких средств и для достижения каких целей могут применяться те или другие знания. Поэтому наука систематизирует объективные знания о действительности.

Итак, основной целью науки является описание, объяснение и предусмотрение процессов и явлений объективной действительности, которые являются предметом ее изучения, с целью использования их в практической деятельности человечества.

Итак, основным содержанием науки является:

Теория как система знаний, которая выступает в форме общественного сознания и достижений интеллекта человека;

Общественная роль в практическом использовании рекомендаций в производстве как основы развития общества.

Наука в современных условиях выполняет ряд конкретных функций:

Познавательную - удовлетворение потребностей людей в познании законов природы, общества и мышления;

Культурно-воспитательную - развитие культуры, гуманизация воспитания и формирование интеллекта человека;

Практически-действующую - усовершенствование производства и системы общественного отношения.

Совокупность отдельных, конкретных функций науки формируют основную ее функцию - развитие системы знаний, которые оказывают содействие созданию рационального общественного отношения и использование продуктивных сил в интересах всех членов общества.

Научное объяснение явлений природы и общества зафиксированное человеком и получение новых знаний, использование их в практическом освоении мира и является предметом науки : связанные между собою формы развития материи или особенности их отображения в сознания человека.

Наука предусматривает создание единой, логически четкой системы знаний о той или другой стороне окружающего мира, сведенной в одну систему.

Основным признаком и главной функцией науки является познание объективного мира. Наука создана для непосредственного выявления существенных сторон всех явлений природы, общества и мышления.

Цель науки - познание законов развития природы и общества, их влияние на природу на базе использования знаний с целью получения полезных для общества результатов. Пока соответствующие законы не открыты, человек может только описывать явления, собирать, систематизировать факты, но он ничего не может объяснить и предусмотреть.

Перед наукой стоят такие задачи:

Сбор и обобщение фактов (констатация);

Объяснение внешних взаимосвязей явлений (интерпретация);

Объяснение сути физических явлений, их внутренних взаимосвязей и противоречий (построение моделей);

Прогнозирование процессов и явлений;

Установление возможных форм и направлений практического использования полученных знаний.

Наука как специфическая деятельность характеризуется рядом признаков:

Наличием систематизированных знаний (научных идей, теорий, концепций, законов, закономерностей, принципов, гипотез, понятий, фактов);

Наличием научной проблемы, объектом и предметом исследования;

Практической значимостью как явления (процесса), что определяется, так и знаний о нем.

- 27.40 Кб

Министерство образования и науки Российской Федерации

Северо-Западный Институт Печати

Кафедра книгоиздания и книжной торговли

РЕФЕРАТ

По дисциплине:

Концепции современного естествознания

Этапы развития науки

                      Выполнила:

                      Исхакова А.Е

                  Специальность:

                      Журналистика

                      Группа: Жд.1.2

                      Проверил:

                      Романенко В.Н

Санкт-Петербург

2011

Структура

  1. Введение
  2. Заглавие
  3. Причины и предпосылки возникновения науки. Нулевой этап.
  4. 1 этап - Древняя Греция
  5. 2 этап - Средневековая европейская наука
  6. 3 этап - Новоевропейская классическая наука (15-16 вв).
  7. 4 этап - 20 век – набирает силу неклассическая наука.
  8. 5 этап - Постнеклассическая наука
  9. Заключение
  10. Список используемой литературы

Заглавие

Наука - особый вид познавательной деятельности, направленной на получение, уточнение и распространение объективных, системно-организованных и обоснованных знаний о природе, обществе и мышлении. Основой этой деятельности является сбор научных фактов, их постоянное обновление и систематизация, критический анализ и, на этой базе, синтез новых научных знаний или обобщений, которые не только описывают наблюдаемые природные или общественные явления, но и позволяют построить причинно-следственные связи и, как следствие, - прогнозировать. Те естественнонаучные теории и гипотезы, которые подтверждаются фактами или опытами, формулируются в виде законов природы или общества.

Наука в широком смысле включает в себя все условия и компоненты научной деятельности:

  • разделение и кооперацию научного труда;
  • научные учреждения, экспериментальное и лабораторное оборудование;
  • методы научно-исследовательской работы;
  • понятийный и категориальный аппарат;
  • систему научной информации;
  • а также всю сумму накопленных ранее научных знаний.

Как своеобразная форма познания - специфический тип духовного производства и социальный институт - наука возникла еще в Древней Греции и до сих пор является важнейшей отраслью нашей жизни. Мой реферат поможет изучить и упорядочить информацию становления науки.

Причины возникновения науки:

Первой и главной причиной возникновения науки является ф ормирование субъектно-объектных отношений между человеком и природой, между человеком и окружающей его средой . Это связано, в первую очередь, с переходом человечества от собирательства к производящему хозяйству. Так, уже в эпоху Палеолита человек создаёт первые орудия труда из камня и кости - топор, нож, скребло, копьё, лук, стрелы, овладевает огнём и строит примитивные жилища. В эпоху Мезолита человек плетёт сеть, делает лодку, занимается обработкой дерева, изобретает лучковое сверло. В период Неолита (до 3000 г. до н. э.) человек развивает гончарное ремесло, осваивает земледелие, занимается изготовлением глиняной посуды, использует мотыгу, серп, веретено, глиняные, бревенчатые, свайные постройки, овладевает металлами. Использует животных в качестве тягловой силы, изобретает колёсные повозки, гончарное колесо, парусник, меха. К началу первого тысячелетия до нашей эры появляются орудия труда из железа.

Второй причиной формирования науки является усложнение познавательной деятельности человека. «Познавательная», поисковая активность характерна и для животных, но в силу усложнения предметно-практической деятельности человека, освоения человеком различных видов преобразующей деятельности, происходят глубокие изменения в структуре психики человека, строении его мозга, наблюдаются изменения в морфологии его тела.

Предпосылки возникновения науки:

Развитие науки было составной частью общего процесса интеллектуального развития человеческого разума и становления человеческой цивилизации. Нельзя рассматривать развитие науки в отрыве от следующих процессов:

  • Формирование речи;
  • Развитие счёта;
  • Возникновение искусства;
  • Формирование письменности;
  • Формирование мировоззрения (миф);
  • Возникновение философии.

Для того чтобы определить основные этапы науки мы должны начать с ее возникновения. Итак, как же возникла наука? Существует пять точек зрения:

  • Наука была всегда, начиная с момента зарождения человеческого общества, так как научная любознательность органично присуща человеку;
  • Наука возникла в Древней Греции, так как именно здесь знания впервые получили свое теоретическое обоснование (общепринятое);
  • Наука возникла в Западной Европе в XII-XIV вв., поскольку проявился интерес к опытному знанию и математике;
  • Наука начинается в XVI-XVIIвв., и благодаря работам Г. Галилея, И. Кеплера, X. Гюйгенса и И. Ньютона, создается первая теоретическая модель физики на языке математики;
  • Наука начинается с первой трети XIXв., когда исследовательская деятельность была объединена с высшим образованием.

    Наука существовала еще в доисторическом обществе и древнем мире. Мы можем назвать этот этап - нулевым. В доисторическом обществе и древней цивилизации знание существовало в рецептурном виде, т.е. знания были неотделимы от умения и неструктурированны. Эти знания являлись дотеоретическими, несистематичными, отсутствовали абстракции. К вспомогательным средством дотеоретического знания мы относим: миф, магию, ранние формы религии. Миф (повествование) – рациональное отношение человека к миру. Магия – сами действия. Магия мыслит взаимосвязанными процессами физической, ментальной, символической и иной природы.

    Основные идеи абстрактно-теоретического мышления в древнегреческой философии. В античной культуре древней Греции появляется теоретическое, систематическое и абстрактное мышление. В основе лежит идея особого знания (общее знание, первое знание). У древних греков появляется архе-первый (начало); физис-природа (то из чего происходит вещь). Начало у вещей одно, а природа различна. Это были два концентрата теоретического мышления. Там же возникли: закон идентичности, закон исключения третьего, закон непротиворечия, закон достаточного основания. Это систематический подход. Первые теории создавались в философии для нужд философии. Теория начинает соединяться с научными знаниями во 2-м веке до н.э. Версии возникновения теории: уникальная экономика, греческая религия.

    Этапы развития науки

1 этап – Древняя Греция – возникновение науки в социуме с провозглашением геометрии, как науки об измерении земли. Объект исследования – мегамир (вкл. вселенную во всём многообразии).

  • работали не с реальными предметами, не с эмпирическим объектом, а с математическими моделями – абстракциями.
  • Из всех понятий выводились аксиома и опираясь на них с помощью логического обоснования выводили новые понятия.

Идеалы и нормы науки : знание раде знаний. Метод познания – наблюдение.

Науч. картина мира: носит интегративный хар-р, основана на взаимосвязи микро- и макрокосмоса.

Филос. основания науки : Ф. – наука наук. Стиль мышления – интуитивно диалектический. Антропокосмизм – человек есть органическая часть мирового космического процесса.

2 этап – Средневековая европейская наука – наука превратилась в служанку богословия. Противоборство между номиналистами (единичные вещи) и реалистами (универсальные вещи).

Объект исследования – макромир (Земля и ближайший космос).

Идеалы и нормы науки : Знание – сила. Индуктивно эмпирический подход. Механицизм. Противопоставление объекта и субъекта.

Научная картина мира : Ньютоновская классическая механика; гелиоцентризм; божественное происхождение окр. мира и его объектов; мир – сложно действующий механизм.

Филос. основания науки : Механистический детерминизм. Стиль мышления – механистично метафизический (отрицание внутреннего противоречия)

  • научное знание ориентируется на теологизм
  • ориентировано на специфическое обслуживание интересов ограниченного числа
  • возникают научные школы, провозглашается приоритет эмпирического познания в исследовании окружающей действительности (идёт разделение наук).

3 этап – Новоевропейская классическая наука (15-16 вв).

Объект исследования – микромир. Совокупность элементарных частиц. Взаимосвязь эмпирического и рационального уровня познаний.

Идеалы и нормы науки : принцип зависимости объекта от субъекта. Сочетание теоретического и практического направлений.

Научная картина мира : формирование частно научных картин мира (химическая, физическая …)

Филос. основания науки : диалектика – стиль естественнонаучного мышления.

  • Культура постепенно освобождается от господства церкви.
  • первые попытки убрать схоластику догматизм
  • интенсивное развитие экономики
  • лавиноообразный интерес к научному знанию.

    Особенности периода:

  • научная мысль начинает фокусироваться на получение объективно истинного знания с уклоном в практическую полезность
  • попытка анализа и синтеза рациональных зерен преднауки
  • начинают преобладать экспериментальные знания
  • наука формируется как социальный институт (ВУЗы, научные книги)
  • начинают выделяться технические и социально-гуманитарные науки Огюст Конт

4 этап – 20 век – набирает силу неклассическая наука .

Объект исследования – микро-, макро- и мегамир. Взаимосвязь эмпирического, рационального и интуитивного познания.

Идеалы и нормы науки : аксиологизация науки. Повышение степени "фундаментализации" прикладных наук.

Научная картина мира : формирование общенаучной картины мира. Преобладание представления о глобальном эволюционизме (развитие – атрибут, присущий всем формам объективной реальности). Переход от антропоцентризму к биосфероцентризму (человек, биосфера, космос – во взаимосвязи и единстве).

Философское основания науки : синергетический стиль мышления (интегративность, нелинейность, бифуркационность)

5 этап: Постнеклассическая наука – современный этап развития научного познания.

Объект исследования : исторически развивающиеся системы - Земля как система взаимодействия геологических, биологических и техногенных процессов; Вселенная как система взаимодействия мик­ро-, макро- и мегамира и др.

Идеалы и нормы науки: единство многообразия вещей, свойств и отношений на основе соответствующей философской трактовки категорий материи, движения, пространства и времени

Введение
Заглавие
Причины и предпосылки возникновения науки. Нулевой этап.
1 этап - Древняя Греция
2 этап - Средневековая европейская наука
3 этап - Новоевропейская классическая наука (15-16 вв).
4 этап - 20 век – набирает силу неклассическая наука.
5 этап - Постнеклассическая наука
Заключение
Список используемой литературы

В истории естествознания можно выделить несколько этапов. Период приблизительно с VI века до н.э. (начало зарождения философии) и до XVI – XVII веков характеризуется существованием натурфилософии. Далее, с XVI – XVII веков появляется классическое естествознание, которое завершается на рубеже XIX – XX веков.

Этот исторический период, в свою очередь, можно разделить на два этапа: этап становления механистической картины мира (до 30-х годов XIX века) и этап зарождения и формирования эволюционных моделей мира (до конца XIX – начала XX века). Затем следует так называемый период неклассического естествознания, который завершается к середине XX века. И последний период в истории естествознания, продолжающийся и по сей день, принято обозначать как период постнеклассического естествознания.

Главными компонентами основания науки являются идеалы и методы исследования (представления о целях научной деятельности и способах их достижений); научная картина мира (целостная система представлений о мире, его общих свойствах и закономерностях, формирующихся на основе научных понятий и законов); философские идеи и принципы, обосновывающие цели, методы, нормы и идеалы научного исследования. Этапы развития науки, связанные с перестройкой исследова­тельских стратегий, задаваемых основаниями науки, получили на­звание научных революций.

Перестройка оснований науки, сопровождающаяся научными революциями, может явиться, во-первых, результатом внутридисциплинарного развития, в ходе которого возникают проблемы, неразрешимые в рамках данной научной дисциплины. Например, в ходе своего развития наука сталкивается с новыми типами объектов, которые не вписываются в существующую картину мира, их познание требует новых познавательных средств. Это ведет к пересмотру оснований науки. Во-вторых, научные революции возможны благодаря междисциплинарным взаимодействиям, основанным на переносе идеалов и норм исследования из одной дисциплины в другую, что приводит часто к открытию явлений и законов, которые до этого не попадали в сферу научного поиска.

В зависимости от того, какой компонент основания науки перестраивается, различают две разновидности научной революции: а) идеалы и нормы научного исследования остаются неизменными, а картина мира пересматривается; б) одновременно с картиной мира радикально меняются не только идеалы и нормы науки, но и ее философские основания.

Главным условием появления идеи научных революций яви­лось признание историчности разума, а, следовательно, историч­ности научного знания и соответствующего ему типа рациональ­ности.

Философия XVII - первой половины XVIII в. рассматри­вала разум как неисторическую, самотождественную способность человека как такового. Принципы и нормы разумных рассужде­ний, с помощью которых добывается истинное знание, признава­лись постоянными для любого исторического времени. Свою за­дачу философы видели в том, чтобы «очистить» разум от субъек­тивных привнесений, иска­жающих чистоту истинного знания.

Только в XIX в. представление о внеисторичности разума было поставлено под сомнение. Французские позитивисты (Сен-Симон, О. Конт) выделили стадии познания в человеческой исто­рии, а немецкие философы послекантовского периода, ввели понятие исторического субъекта познания. Но если субъект по­знания историчен, то это, в первую очередь, означает историч­ность разума, с помощью которого осуществляется процесс познания. В результате истина стала определяться как имеющая «привязку» к определенному историческому времени. Принцип историзма разума получил дальнейшее разви­тие в марксизме, неогегельянстве, неокантианстве, философии жизни. Эти совершенно разные по проблематике и способу их решения философские школы объединяло признание конкретно-исторического характера человеческого разума.

В середине XX в. появилось целое исследовательское направ­ление, получившее название «социология познания». В рамках этого направления научное зна­ние рассматривалось как социальный продукт. Другими слова­ми, признавалось, что идеалы и нормы научного познания, спо­собы деятельности субъектов научного познания детерминируются уровнем развития общества, его конкретно-историческим бытием.

Принцип историчности, став ключевым в анализе научного знания, позволил американскому философу Т. Куну представить развитие науки как историческую смену парадигм, происходящую в ходе научных революций. Он делил этапы развития науки на периоды «нормальной науки» и научной революции. В период «нор­мальной науки» подавляюще число ученых принимает установ­ленные модели научной деятельности или парадигмы (парадигма - пример, образец) и с их помощью решает все научные проблемы. В содержание парадигм входят совокупность теорий, методологических принципов, цен­ностных и мировоззренческих установок. Период «нормальной науки» заканчивается, когда появляются проблемы и задачи, не разрешимые в рамках существующей парадигмы. Тогда она «взрывается», и ей на смену приходит новая парадигма. Так происходит революция в науке.

Перестройка оснований науки, происходящая в ходе научных революций, приводит к смене типов научной рациональности. И хотя исторические типы рациональности - это своего рода абстрактные идеализации, все же историки и философы науки выде­ляют несколько таких типов.

Исторически первичная рациональ­ность была открыта в Древней Греции (пери­од между 800 и 200 гг. до н. э.). Скрытым или явным основанием рациональности является признание тождества мышления и бытия. Само это тождество впервые было открыто греческим философом Парменидом. Под бытием он понимал не наличную действитель­ность, данную чувствам, а нечто неуничтожимое, единственное, неподвижное, нескончаемое во времени, неделимое, ни в чем не нуждающееся, лишенное чувственных качеств.

Бытие - это ис­тинно сущее Единое (Бог, Абсолют). Тождество мышления (ума) и бытия оз­начало способность мышления выходить за пределы чувственно­го мира и «работать» с идеальными «моделями», которые не со­впадают с обыденными житейскими представлениями о мире. Способность «работать» с идеальными моделями мышление может реализовать только в слове. Мышление понималось античными философа­ми как «созерцание, уподобляющее душу Богу», как ин­теллектуальное озарение, уподобляющее ум человеческий уму бо­жественному. Основная функция разума усматривалась в позна­нии целевой причины. Только разуму доступны понятия цели, блага, наилучшего.

Первая научная революция произошла в XVII в. Ее результа­том было возникновение классической европейской науки, преж­де всего, механики, а позже физики. В ходе этой революции сфор­мировался особый тип рациональности, получивший название научного (классический тип научной рациональности).

Он стал результатом того, что европейская наука отказа­лась от метафизики.

Бытие перестало рассматриваться как Абсолют, Бог, Единое. Величественный античный Космос был отождеств­лен с природой. Человеческий разум потерял свое космическое из­мерение, стал уподобляться не Божественному разуму, а самому себе и наделялся статусом суверенности. Не отказываясь от открытой античной философи­ей способности мышления работать с идеальными объектами, на­ука Нового времени сузила их спектр: к идее идеальности присо­единилась идея артефакта (сделанной вещи), несовместимая с чи­стым созерцанием, открытым античной рациональностью. Науч­ная рациональность признала правомерность только тех идеаль­ных конструктов, которые можно контролируемо воспроизвести, сконструировать бесконечное количество раз в эксперименте. Основным содержанием тождества мышления и бытия становится признание возможности отыскать такую одну-единственную идеальную конструкцию, которая полностью соот­ветствовала бы изучаемому объекту, обеспечивая тем самым од­нозначность содержания истинного знания. Наука отказалась вводить в процедуры объяснения не только конечную цель в качестве главной в мироздании и в деятельности разума, но и цель вообще. Спиноза утверждал, что «природа не действует по цели».

Вторая научная революция произошла в конце XVIII-первой половине XIX в. Произошел переход от классической науки, ориентированной в основном на изучение механических и физических явлений, к дис­циплинарно организованной науке. Биология и геоло­гия вносят в картину мира идею развития, которой не было в ме­ханистической картине мире, а потому нужны были новые идеалы объяснения, учитывающие идею развития. Отношение к механи­стической картине мира как единственно возможной и истинной было поколеблено.

Появление наук о живом подрывало претензии классической научной рациональности на статус единственной и абсолютной. Происходит дифференциация идеалов и норм научности и рацио­нальности. Так, в биологии и геологии возникают идеалы эволю­ционного объяснения, формируется картина мира, не редуцируе­мая к механической.

Тип научного объяснения и обоснова­ния изучаемого объекта через построение наглядной механичес­кой модели стал уступать место другому типу объяснения, выраженному в требованиях непротиворечивого математического опи­сания объекта, даже в ущерб наглядности. Крен в математиза­цию позволил конструировать на языке математики не только строго детерминистские, но и случайные процессы, которые, согласно принципам классического рационализма, могли рассмат­риваться только как иррациональные. В этой связи многие уче­ные-физики начинают осознавать недостаточность классического типа рациональности. Появляются первые намеки на необходи­мость ввести субъективный фактор в содержание научного зна­ния, что неизбежно приводило к ослаблению жесткости принци­па тождества мышления и бытия, характерного для классической науки. Как известно, физика была лидером естествознания, потому «поворот» ученых-физиков в сторону неклассическо мышления, безусловно, можно рассматривать как начало возникновения парадигмы неклассической науки.

Третья научная революция охватывает период с конца XIX в. до середины XX в. и характеризуется появлением неклассическо­го естествознания и соответствующего ему типа рациональности (некслассический тип научной рациональности). В центр исследовательских программ выдвигается изучение объек­тов микромира. Особенности изу­чения микромира способствовали дальнейшей трансформации принципа тождества мышления и бытия, который является базо­вым для любого типа рациональности. Произошли изменения в понимании идеалов и норм научного знания.

Ученые согласились с тем, что мышлению объект не дан в его первозданном состоянии: оно изучает не объект, как он есть сам по себе, а то, как явилось наблюдателю взаимодействие объекта с прибором. Так как любой эксперимент проводит исследователь, то проблема истины напрямую становится связанной с деятельностью. Некоторые мыслители прокомментировали подобную ситуацию так: «Ученый задает природе вопросы и сам я них отвечает». Ученые и философы поставили вопрос о «непроз­рачности» бытия, что блокировало возможности субъекта позна­ния реализовывать идеальные модели и проекты, вырабатывае­мые рациональным сознанием. В итоге принцип тождества мыш­ления и бытия продолжал «размываться». В противовес идеалу единственно научной тео­рии, «фотографирующей» исследуемые объекты, стала допускаться истинность нескольких отличающихся друг от друга теоретичес­ких описаний одного и того же объекта. Исследователи столкну­лись с необходимостью признать относительную истинность теорий и картины природы, выработанной на том или ином этапе развития естествознания.

Четвертая научная революция совершилась в последнюю треть XX столетия. Она связана с появлением особых объектов иссле­дования, что привело к радикальным изменениям в основаниях науки. Рождается постнеклассическая наука, объектами изучения которой становятся исторически развивающиеся системы (Земля как система взаимодействия геологических, биологических и тех­ногенных процессов; Вселенная как система взаимодействия мик­ро-, макро- и мегамира и др.). Формируется рациональность постнеклассического типа.

Если в неклассической науке идеал исторической реконструкции использовался преимущественно в гуманитарных науках (история, археология, языкознание и т.д.), а также в ряде естественных дисциплин, таких как геология, биология, то в постнеклассической науке историческая реконструкция как тип те­оретического знания стала использоваться в космологии, астрофизике и даже в физике элементарных частиц, что привело к изменению картины мира.

В ходе разработки идей термодинамики неравновесных процессов, характерных для фазовых переходов и образования диссипативных структур, возникло новое направление в научных дисциплинах - синергетика. Синергетика базируется на представлении, что исторически развивающиеся системы совершают ход от одного относительно устойчивого состояния к другому. При этом появляется новая по сравнению с прежним состоянием уровневая организация элементов системы и ее саморегуляция.

Постнеклассическая наука впервые обратила к изучению таких исторически развивающихся систем, непосредственным компонентом которых является сам человек. При изучении такого рода сложных систем, включающих человека с его преобразовательной производственной деятельностью, идеал ценностно-нейтрального исследования ока­зывается неприемлемым. Объективно истинное объяснение и опи­сание такого рода систем предполагает включение оценок обще­ственно-социального, этического характера. 11

Историческое развитие науки был неравномерным. Стадии быстрого и даже стремительного прогресса сменялись периодами застоя, а иногда и упадка. В античные времена физико-математические науки особого развития приобрели на территории Древней Греции и Древнего Рима, а в средневековье их центр переместился на Восток, прежде всего в Индию и Китай. В Новую эпоху инициативе в развитии физико-математических наук вновь завладела Европа.

в Течение всей истории науки взаимодействовали две тенденции, которые дополняли друг друга - углубление специализации и усиление стремления к интеграции. Одновременно с дифференциацией науки, ее разделением на нередко очень специализированные дисциплины происходит ее постепенная интеграция, которая основывается на сочетании научных методов, идей и концепций, а также на необходимости с единой точки зрения рассмотреть внешне разнородные явления. К важнейшим последствиям интеграции науки относятся упрощение обработки и поиска информации, освобождение ее от избытка методов, моделей и концепций. Главным путем интеграции является формирование "междисциплинарных наук", которые связывают традиционные специальности и благодаря этому делают возможным возникновение универсальной науки, призванной создать своеобразный каркас, который объединял бы отдельные науки в единое целое. Чем інтегрованіша наука, тем больше она отвечает критерию простоты и экономии.

С расчленением науки на отдельные дисциплины, между ними остается меньше связей, усложняется обмен информацией. Анализируя подобные объекты, прибегая к одинаковых методов, отрасли часто трактуются разным языком, что затрудняет междисциплинарные исследования. Если английский естествоиспытатель Чарльз Роберт Дарвин мог одинаково успешно осуществлять исследования в области зоологии, ботаники, антропологии и геологии, то в конце XIX века. это уже было невозможным, особенно для людей менее одаренных. Если в его времена специалистов, которые изучали живую природу, называли биологами, то со временем в биологии не только отделились ботаника, зоология, протистологія (раздел зоологии, изучающий жизнь простейших животных) и микология (раздел ботаники, изучающий грибы), но и они, в свою очередь, разделились на отдельные специальности. Каждая из этих дисциплин переполнена фактическим материалом, овладение которым заполняет жизнь ученого, и лишь особо одаренные ученые способны одновременно или поочередно работать в двух или нескольких отраслях. Почти неизбежным результатом узкой специализации является профессиональная ограниченность, которая проявляется в сужении мировоззрения, снижении способности понимать то, что предполагает за пределами специализации ученого. Узкая специализация, безусловно, имеет специфические преимущества, но общему прогрессу науки не способствует.

Интеграционные тенденции в науке активно проявляются в постиндустриальную (информационную) эпоху, что в значительной степени связано с развитием компьютерно-коммуникационной технологии и возникновением мировой информационной сети - Интернета. Ощутимее стремление к формулировке новых задач высшего уровня обобщенности, даже универсальных, которые часто объединяют отдаленные области знаний. Продолжается процесс создания общих понятий, концепций, научного языка. Характерным признаком современной науки считают усиление интереса к поискам принципиальной структурной обобщенности разнородных систем и общих механизмов различных явлений, которые способствуют интеграции науки, ее логической стройности и единства, что обеспечивает более глубокое понимание единства мира. Современным научным взглядам свойственна идея существования общих моделей разнообразных явлений, изоморфизма (одинаковости) структур различных уровней организации. Утверждается осознание того, что наличие общих принципов и моделей в различных отраслях знаний дает возможность переносить их из одной отрасли в другую, что способствует общему прогрессу науки. При этом считается, что интеграция науки является не редукцией (возвратом) наук к физике (редукционизм), а ізоморфізмом систем с разной природой их элементов, структур разных уровней организации. Наличие ізоморфізмів найрізнорідніших систем играет определенную эвристическую роль, поскольку они не только характеризуют концептуальный каркас современной науки, но и облегчают выбор конкретных направлений исследований, позволяют избежать дублирования теоретических исследований и др.

Радикальные качественные сдвиги в развитии науки определены как научные революции. Именно так оценено возникновения в XVII веке. естествознания. Оно показало, что наука приобрела исторической силы, а научные знания по значению опередили значение техники. С тех пор научные представления об окружающем мире стали соревноваться с бытовыми представлениями. Будучи закономерным этапом в развитии науки, научная революция XVII века. в корне изменила представление о строении Мироздания и месте в нем человека. Она вызвала перелом в человеческом мышлении, побудила к научному творчеству, направила взгляд и мнение ученых в ранее недоступные сферы.

До самых главных особенностей научной революции относятся:

1. Яркий творческий характер. Полученные ранее знания не разрушались, а интерпретировались в контексте нового понимания.

2. Изменение согласно новых представлений, новое толкование ранее полученных знаний. В период научной революции новое создается на основе уже существующего. Неожиданно оказывается, что в имеющейся информации давно вызревали элементы нового. Поэтому научная революция не является мгновенным переворотом, поскольку новое не сразу получает в науке признание.

3. Появление в течение 1-3 поколений большого количества талантливых человек. Они поднимают целый пласт знаний на небывалую высоту и длительное время не имеют себе равных.

4. Бурное развитие физико-математических наук.

Как особый социальный институт, наука начинается в XVII в. с возникновением первых научных обществ и академий, ее история охватывает три научные революции.

Первая научная революция (XVII-XVIII вв.). В этот период произошло становление классического естествознания. Основные его критерии и характеристики заключаются в объективности знания, достоверности его происхождения, исключении из него элементов, которые не касаются познавательного субъекту и процедурам его познавательной деятельности. Главным требованием к науки было достижение чистой объективности знания. Наука быстро приобретала престижа и авторитетности, претендуя вместе с философией на единственно адекватное воплощение разума. Растущий авторитет науки содействовало возникновению первой формы сцієнтизму (знание, наука), сторонники которого абсолютизировали роль и значение науки. В его лоне сформировался так называемый сцієнтичний (идеологический) утопизм - теория, согласно которой общественные отношения могут быть полностью познанными и прозрачными, а политика основывается исключительно на научных законах, которые совпадают с законами природы. К таким взглядам склонялся французский философ, писатель Дени Дидро, который рассматривал общество и человека через призму естествознания и законов природы. Соответственно, человека он отождествлял со всеми другими природными объектами, машинами, роль сознательного начала в ней сужалась, а то и игнорировались. Поскольку главной наукой периода была механика, общенаучная картина мира классического естествознания имела ярко выраженный механистический характер.

в Конце XVIII века. первая научная революция переросла в промышленную, следствием которой было развитие капиталистического индустриального общества и индустриальной цивилизации. С тех пор развитие науки в значительной степени обусловлен потребностями экономики и производства.

В XIX ст. наука претерпела существенных изменений, ее дифференциация повлекла за собой формирование многих самостоятельных научных дисциплин с соответствующими сферами компетенции. В этом процессе механика потеряла монополию на толкование общенаучной картины мира, окрепли позиции биологии, химии, геологии. Существенно изменился стиль научного мышления, в котором важное значение приобрела идея развития. Объект познания, в том числе и природа, с тех пор рассматривался не как завершенная и устойчивая вещь, а как процесс. Вообще наука продолжала развиваться в рамках классической формы, и в дальнейшем претендуя на абсолютность исчерпывающего видения картины мира. Неуклонно рос ее общественный авторитет и престиж.

Вторая научная революция (конец XIX - начало XX вв.). Она повлекла за собой появление новой, неклассической науки, которой принадлежат открытия электрона, радио, превращения химических элементов, создание теории относительности и квантовой теории, проникновение в микромир и познания больших скоростей. Радикальные изменения произошли во всех сферах научного знания. Заявили о себе новые научные направления, в частности кибернетика и теория систем.

Неклассическая наука уже не выдвигала претензий на полную или абсолютную объективность знания, на отсутствие в нем субъективного аспекта. В ней резко возросла роль субъективного фактора. Все больше она учитывала влияние методов, способов и средств познания. Бесспорным было для нее и то, что познание обусловлено не только природой познавательного объекта, а и многими другими факторами, ее знания неуклонно избавлялось эмпиризма, теряло исследовательское происхождение, становясь сугубо теоретическим. Особое значение в познании начали приобретать теории и модели, выстроенные познавательным субъектом с помощью математического, статистического, комбинаторного и других подходов.

В сфере познания и в координатах каждой из наук усиливается процесс дифференциации, следствием которого стало увеличение количества научных дисциплин и школ. Благодаря этому очертилась тенденция к плюрализму. Приемлемым стало существование в рамках науки различных школ и направлений, разных взглядов на одну проблему. На высших уровнях познания проявил себя и плюрализм общих картин мира, претендующих на истинность. Актуальность приобрел принцип релятивизма - относительности человеческих знаний, согласно которому каждая теория признается истинной лишь в конкретной системе данных или координат. В научном обороте понятие "истинность" все чаще уступает понятию "валидность", которое означает обоснованность, приемлемость. Подобная судьба постигла и такие понятия классической науки, как "связи", "детерминизм", что уступили место понятиям "возможность" и "индетерминизм".

Третья научная революция (середина XX века. - настоящего). Поскольку она была продолжением второй научной революции, ее также называют научно-технической или научно-технологической. Главным ее результатом было возникновение постнеклассической науки. Подобно тому, как первая научная революция переросла в промышленную революцию, которая породила индустриальную цивилизацию, третья научная революция превратилась в технологическую, которая формирует постиндустриальную цивилизацию, ей соответствует постиндустриальное, информационное, постмодерное общество. Основой этого общества являются новейшие высокие и тонкие технологии, основанные на новых источниках и видах энергии, новых материалах и средствах управления технологическими процессами. Исключительную роль при этом играют компьютеры, средства массовой коммуникации и информатики, развитие и распространение которых приобрели гигантских масштабов.

Во время третьей научной революции в науке появляется качество непосредственной и основной производительной силы, главного фактора производства и общественной жизни. Прямым и неразрывным стал ее связь с производством, во взаимодействии с которым она взяла на себя ведущую роль, продолжая открывать, возрождая новейшие и высокие технологии, новые источники энергии, материалы.

Наука претерпела глубоких изменений. Прежде всего усложнились элементы процесса познания - субъект, который познает, средства и объект познания, изменилось их соотношение. Субъектом познавательного процесса редко есть один ученый, который самостоятельно исследует какой-то объект. Чаще всего его образует коллектив, группа, численность которых остается неопределенной. Субъект познания перестает находиться вне его объектом, противопоставляться ему, а включается в процесс познания, становится одним из элементов системы координат этого процесса. Для изучения объекта познания часто не нужны непосредственный контакт и взаимодействие с ним. Его исследования нередко осуществляются на большом расстоянии. Часто объект познания лишен каких-либо очертаний, будучи частью или фрагментом условно выделенного явления. Постоянно растет, приобретая решающее значение, роль средств и способов познания.

Основные этапы развития науки

На проблему возникновения и развития науки много взглядов, мнений. Выделим кое-какие мнения:

1. Наука существует с тех времен, как только человек начал осознавать себя мыслящим существом, т. е. наука существовала всегда, во все времена.

2. Наука возникла в Древней Греции (Элладе) в 6-5 вв. до н. э., так как именно тогда и там впервые знания соединили с обоснованием (Фалес, Пифагор, Ксенофан).

3. Наука возникла в западноевропейском мире в позднее средневековье (12-14 вв.) вместе с особым интересом к опытному знанию и математике (Роджер Бэкон).

4. Наука возникает в 16-17 вв., т. е. в Новое время, начинается с работ Кеплера, Гюйгенса, но особенно с работ Декарта, Галилея и Ньютона, создателей первой теоретической модели физики на языке математики.

5. Наука начинается в первой трети 19 века, когда исследовательская деятельность была объединена с системой высшего образования.

Можно считать так. Первые зачатки, генезис науки начался в античное время в Греции, Индии и Китае, а наука как отрасль культуры со своими специфическими методами познания. Впервые обоснованными Френсисом Бэконом и Рене Декартом, возникла в Новое время (сер.17-сер.18 вв.), в эпоху первой научной революции.

1 научная революция – классическая (17-18 вв.). Связана с именами:

Кеплера (установил 3 закона движения планет вокруг Солнца (не объясняя причины движения планет), уточнил расстояние между Землей и Солнцем),

Галилея (изучал проблему движения, открыл принцип инерции, закон свободного падения тел),

Ньютона (сформулировал понятия и законы классической механики, математически сформулировал закон всемирного тяготения, теоретически обосновал законы Кеплера о движении планет вокруг Солнца)

Механическая картина мира Ньютона: любые события предопределены законами классической механики. Мир, все тела построены из твердых, однородных, неизменных и неделимых корпускул - атомов. Однако накапливались факты, не согласовывающиеся с механистической картиной мира и к середине 19 в. она утратила статус общенаучной.

Согласно 1 научной революции, объективность и предметность научного знания достигается устранением субъекта познания (человека) и его процедур из познавательной деятельности. Место человека в этом научной парадигме - место наблюдателя, испытателя. Основополагающий признак порожденного классического естествознания и соответствующей научной рациональности - абсолютная предсказуемость событий и явлений будущего и восстановление картин прошлого.

2 научная революция охватила период с конца 19 до середины 20 столетия. Знаменуется эпохальными открытиями:

в физике (открытия атома и его делимости, электрона, радиоактивности, рентгеновских лучей, квантов энергии, релятивистской и квантовой механик, объяснение природы тяготения Эйнштейном),

в космологии (концепция нестационарной (расширяющейся) Вселенной Фридмана-Хаббла: Эйнштейн, считая радиус кривизны мирового пространства, утверждал, что Вселенная должна быть пространственно конечной и иметь форму четырехмерного цилиндра. В 1922-1924 гг. Фридман выступил с критикой выводов Эйнштейна. Он показал необоснованность его исходного постулата - о стационарности, неизменности во времени Вселенной. Говорил о возможном изменении радиуса кривизны пространства и построил 3 модели Вселенной. Первые две модели: т.к. радиус кривизны растет, то Вселенная расширяется из точки или из конечного объема. Если радиус кривизны периодически меняется – пульсирующая Вселенная).

В химии (объяснение закона периодичности Менделеева квантовой химией),

В биологии (открытие Менделем законов генетики) и т. д.

Основополагающим признаком новой неклассической рациональности становится вероятностная парадигма, неконтролируемая, а значит, не абсолютная предсказуемость будущего (так называемый индетерминизм). Меняется место человека в науке - теперь его место соучастника в явлениях, его принципиальная включенность в научные процедуры.

Начало возникновения парадигмы неклассической науки.

Последние десятилетия 20 и начала 21 столетий могут быть охарактеризованы как течение третьей научной революции. Фарадей, Максвелл, Планк, Бор, Эйнштейн и многие другие величайшие имена связаны с эпохой 3 научной революции. Открытия в области эволюционной химии, физики лазеров, породившей синергетику, термодинамики нестационарных необратимых процессов, породившей теорию диссипативных структур, теорий автопоэза ((У.Матурана, Ф.Варела). Согласно этой теории сложные системы (биологические, социальные и др.) характеризуются двумя основными свойствами. Первое свойство - гомеостатичность, которая обеспечивается механизмом круговой организации. Сущность этого механизма заключается в следующем: элементы системы существуют для производства функции, а эта функция - прямо или косвенно - необходима для производства элементов, которые существуют для производства функции и т.д. Второе свойство - когнитивность: в процессе взаимодействия с окружающей средой система как бы «познает» ее (происходит соответствующее преобразование внутренней организации системы) и устанавливает такие границы области взаимоотношений с ней, которые допустимы для данной системы, т.е., которые не ведут к ее разрушению или утрате автономности. При этом данный процесс носит прогрессивный характер, т.е. на протяжении онтогенеза системы область ее отношений со средой может расширяться. Поскольку накопленный опыт взаимодействий с внешней средой фиксируется в организации системы, это существенно облегчает преодоление аналогичной ситуации при повторном столкновении с ней.), которые все вместе ведут нас к новейшему постнеклассическому естествознанию и постнеклассической рациональности. Важнейшими признаками постнеклассической рациональности является:

Полная непредсказуемость,

Закрытость будущего,

Выполнимость принципов необратимости времени и движения.

Существует и другая классификация этапов развития науки (н-р, У. Уивера и др.). сформулировал У. Уивер. Согласно ему, наука вначале пережила этап исследования организованной простоты (это была ньютонова механика), затем этап познания неорганизованной сложности (это статистическая механика и физика Максвелла, Гиббса), а сегодня занята проблемой исследования организованной сложности (в первую очередь, это проблема жизни). Подобная классификация этапов науки несет глубокое концептуально-историческое осмысление проблем науки по объяснению явлений и процессов природного и гуманитарного миров.


Естественнонаучное познание явлений и объектов природы структурно состоит из эмпирического и теоретического уровней исследования. Без сомнения, удивление и любопытство являются началом научного исследования (впервые сказал Аристотель). Человек равнодушный, безразличный не может стать ученым, не может увидеть, зафиксировать тот или иной эмпирический факт, который станет научным фактом. Научным из эмпирического факт станет, если подвергнуть его систематическому исследованию. На этом пути, пути поиска способа или метода исследования, первейшими и простейшими являются либо пассивное наблюдение, либо более радикальное и активное - эксперимент. Отличительной чертой истинного научного эксперимента от шарлатанства должна быть его воспроизводимость каждым и всегда (например, большинство так называемых паранормальных явлений - ясновидение, телепатия, телекинез и т. д. - этим качеством не обладают). Эксперименты могут быть реальными, модельными или мысленными. В двух последних случаях необходим высокий уровень абстрактного мышления, поскольку реальность замещается на идеализированные образы, понятия, представления, в действительности не существующие.

Итальянский гений Галилей в свое время (в XV
II в.) добился выдающихся научных результатов, поскольку стал мыслить идеальными (абстрактными) образами (идеализациями). Среди них были такие абстракции, как абсолютно гладкий упругий шар, гладкая, упругая поверхность стола, в мыслях замененная идеальной плоскостью, равномерное прямолинейное движение, отсутствие сил трения и др.

На теоретическом уровне необходимо придумать некоторые новые, ранее не имевшие места в данной науке понятия, выдвинуть гипотезу. При гипотезе принимается во внимание какой-нибудь один или несколько важных признаков явления и на основании только их строится представление о явлении, без внимания к другим его сторонам. Эмпирическое обобщение не выходит за пределы собранных фактов, а гипотеза - выходит.

Далее в научном исследовании необходим возврат к эксперименту с тем, чтобы не столько проверить, сколько опровергнуть высказанную гипотезу и, может быть, заменить ее на другую. На данном этапе познания действует принцип фальсифицируемости научных положений. «вероятны»». Прошедшая проверку гипотеза приобретает статус закона (иногда закономерности, правила) природы. Несколько законов из одной области явлений образуют теорию, которая существует до тех пор, пока остается непротиворечивой фактам, несмотря на возрастающий объем все новых экспериментов. Итак, наука - это наблюдения, эксперименты, гипотезы, теории и аргументация в пользу каждого из ее этапов развития.

Наука как таковая есть отрасль культуры, рациональный способ познания мира и организационно-методический институт. Сформировавшаяся к настоящему времени как тип западноевропейской культуры наука - это особый рациональный способ познания природы и общественных формаций, основанный на эмпирической проверке или математическом доказательстве. Основная функция науки - выработка и теоретическая систематизация объективных знаний о действительности, ее результат - сумма знаний, а непосредственная цель науки - описание, объяснение и предсказание процессов и явлений действительности. Естествознание - отрасль науки, основанная на воспроизводимой эмпирической проверке гипотез, его главное назначение - создание теорий или эмпирических обобщений, описывающих природные явления.

Используемые в науке методы, в естествознании, в частности, подразделяются на эмпирические и теоретические. Эмпирические методы - наблюдение, описание, измерение, наблюдение. Теоретические методы - формализация, аксиоматизация и гипотетико-дедуктивный. Другое деление методов - на всеобщие или общезначимые, на общенаучные и частные или конкретно-научные. Например, всеобщие методы: анализ, синтез, дедукция, индукция, абстрагирование, аналогия, классификация, систематизация и т. д. Общенаучные методы: динамические, статистические и т. д. В философии науки различают, по крайней мере, три разных подхода - Поппера, Куна и Лакатоса. Центральным местом у Поппера является принцип фальсификации, у Куна - понятие нормальной науки, кризисов и научных революций, у Лакатоса - концепция жесткого ядра науки и сменяемости научно-исследовательских программ. Этапы развития науки могут быть охарактеризованы либо как классический (детерминизм), неклассический (индетерминизм) и постнеклассический (бифуркационный или эволюционно-синергетический), либо как этапы познания организованной простоты (механика), неорганизованной сложности (статистическая физика) и организованной сложности (жизнь).


Генезис основных концептуальных понятий современного естествознания античными и средневековыми цивилизациями. Роль и значение мифов в становлении науки и естествознания. Античные ближневосточные цивилизации. Античная Эллада (Древняя Греция). Античный Рим.

Начинаем изучать донаучный период развития естествознания, временные рамки которого простираются от античности (7 в. до н.э.) до 15 в. новой эры. В этот исторический период естествознание государств Средиземноморья (Вавилон, Ассирия, Египет, Эллада и т. д.), Китая, Индии и арабского Востока (наиболее древних цивилизаций) существовало в форме так называемой натурфилософии (происходит от лат. nature - природа), или философии природы, суть которой состояла в умозрительном (теоретическом) истолковании единой, целостной природы. Особо надо обратить внимание именно на понятие целостности природы, т. к. в Новое время (17-19 вв.) и в Новейшее время, в современную эпоху, (20-21 вв.), целостность науки о природе была фактически утрачена и на новой основе начала возрождаться только в конце 20 века.

Английский историк Арнольд Тойнби (1889-1975) выделял в человеческой истории 13 самостоятельных цивилизаций, русский социолог и философ Николай Данилевский (1822-1885) - 11 цивилизаций, немецкий историк и философ Освальд Шпенглер (1880-1936) - всего 8 цивилизаций:

v вавилонскую,

v египетскую,

v народа майя,

v античную,

v индийскую,

v китайскую,

v арабскую,

v западную.

Мы будем выделять здесь только естествознание тех цивилизаций, которые сыграли наиболее выдающуюся роль в возникновении, становлении и развитии натурфилософии и современного естествознания.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png